dizocilpine-maleate and tele-methylhistamine

dizocilpine-maleate has been researched along with tele-methylhistamine* in 2 studies

Other Studies

2 other study(ies) available for dizocilpine-maleate and tele-methylhistamine

ArticleYear
Activation of brain histaminergic neurotransmission: a mechanism for cognitive effects of memantine in Alzheimer's disease.
    The Journal of pharmacology and experimental therapeutics, 2011, Volume: 336, Issue:2

    We previously reported that some N-methyl-D-aspartate (NMDA)-receptor antagonists enhanced histamine neuron activity in rodents. Here, we have investigated the effects of memantine, an NMDA-receptor antagonist used for the treatment of Alzheimer's disease, on histaminergic neurotransmission. In vitro, memantine antagonized native NMDA receptors with a micromolar potency but had no effect at recombinant human histamine receptors. In vivo, a single administration of memantine increased histamine neuron activity, as shown by the 60% increase of tele-methylhistamine (t-MeHA) levels observed in the brain of mice. This increase occurred with an ED(50) of 0.3 ± 0.1 mg/kg, similar to that found on inhibition of ex vivo [(3)H]dizocilpine maleate (MK-801) binding (1.8 ± 1.3 mg/kg). Two days after pretreatment of mice with memantine at 5 mg/kg twice daily for 5 days, t-MeHA levels were enhanced by 50 ± 7% (p < 0.001), indicating a long-lasting activation of histamine neurons. Quantitative polymerase chain reaction analysis was used to explore genes involved in this persistent effect. H(3) receptor mRNAs were strongly increased, but the density of H(3) receptor binding sites was increased solely in hypothalamus (by 141 ± 24%). Up-regulations of brain-derived neurotrophic factor and NMDA-receptor 1 subunit mRNAs were also found but were restricted to hippocampus. mRNA expression of α7-nicotinic receptors remained unchanged in any region. Considering the well established cognitive effects of histamine neurons, the increase in brain t-MeHA levels after single or repeated administration of therapeutic doses of memantine suggests that the drug exerts its beneficial effects on cognitive deficits of Alzheimer's disease, at least partly, by activating histamine neurons.

    Topics: Alzheimer Disease; Animals; Brain; Brain-Derived Neurotrophic Factor; Calcium; Cognition; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Histamine; Humans; Male; Memantine; Methylhistamines; Mice; Pyrilamine; Rats; Rats, Wistar; Receptors, Histamine; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission

2011
Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site.
    The Journal of pharmacology and experimental therapeutics, 2010, Volume: 332, Issue:3

    Histamine potentiates activation of native and recombinant N-methyl-d-aspartate receptors (NMDARs), but its mechanisms of action and physiological functions in the brain remain controversial. Using four different models, we have further investigated the histamine-induced potentiation of various NMDAR-mediated responses. In single cultured hippocampal neurons, histamine potentiated NMDA currents. It also potentiated the NMDA-induced increase in intracellular calcium in the absence, as well as with saturating concentrations, of exogenous d-serine, indicating both glycine-dependent and glycine-independent components of its effect. In rat hippocampal synaptosomes, histamine strongly potentiated NMDA-induced [(3)H]noradrenaline release. The profile of this response contained several signatures of the histamine-mediated effect at neuronal or recombinant NMDARs. It was NR2B-selective, being sensitive to micromolar concentrations of ifenprodil. It was reproduced by tele-methylhistamine, the metabolite of histamine in brain, and it was antagonized by impromidine, an antagonist/inverse agonist of histamine on NMDA currents. Up to now, histamine was generally considered to interact with the polyamine site of the NMDAR. However, spermine did not enhance NMDA-induced [(3)H]noradrenaline release from synaptosomes, and the potentiation of the same response by tele-methylhistamine was not antagonized by the polyamine antagonist arcaine. In hippocampal membranes, like spermine, tele-methylhistamine enhanced [(3)H]dl-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid (CGP39653) binding to the glutamate site. In contrast, spermine increased nonequilibrium [(3)H]5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate; MK-801) binding, and suppressed [(3)H]ifenprodil binding, whereas histamine and tele-methylhistamine had no effect. In conclusion, the histamine-induced potentiation of NMDARs occurs in the brain under normal conditions. Histamine does not bind to the polyamine site, but to a distinct entity, the so-called histamine site of the NMDAR.

    Topics: 2-Amino-5-phosphonovalerate; Allosteric Site; Animals; Binding Sites; Calcium; Dizocilpine Maleate; Drug Synergism; Hippocampus; Histamine; In Vitro Techniques; Intracellular Space; Male; Methylhistamines; N-Methylaspartate; Neurons; Norepinephrine; Piperidines; Polyamines; Radioligand Assay; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Spermine; Synaptosomes

2010