dizocilpine-maleate and rhod-2

dizocilpine-maleate has been researched along with rhod-2* in 3 studies

Other Studies

3 other study(ies) available for dizocilpine-maleate and rhod-2

ArticleYear
Novel trigeminal slice preparation method for studying mechanisms of nociception transmission.
    Journal of neuroscience methods, 2017, Jul-15, Volume: 286

    The trigeminal subnucleus caudalis (Vc) plays a critical role in transmission and modulation of nociceptive afferent inputs, and exhibits a similar layer construction to the spinal dorsal horn. However, afferent inputs enter the brainstem and project to a separately located nucleus. It has previously been difficult to record responses of the Vc to afferent fiber activation in a brainstem slice preparation. The aim of the present study was to establish a novel brainstem slice preparation method to study trigeminal nociceptive transmission mechanisms.. Thirty adult 6-7-week-old C57/BL6J male mice were included in the study. Obliquely sliced brainstem sections at a thickness of 600μm, which included the Vc and the root entry zone to the brainstem, were prepared. The Vc response to electrical stimulation of afferent fibers was observed as a change in intracellular calcium concentration by fluorescence intensity response.. Electrical stimulation of afferent inputs to the trigeminal nerve increased fluorescent intensity in the Vc, which was completely diminished by tetrodotoxin and significantly suppressed by the AMPA/kainate antagonist CNQX (paired t-test, P<0.001), although the non-competitive NMDA antagonist (+)-MK801 maleate resulted in no changes. These results suggested a glutamate receptor-mediated response.. This brainstem slice preparation will be useful for investigating nociceptive transmission mechanisms of the trigeminal nerve.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Afferent Pathways; Animals; Calcium; Dizocilpine Maleate; Electric Stimulation; Excitatory Amino Acid Antagonists; Heterocyclic Compounds, 3-Ring; In Vitro Techniques; Male; Mice; Mice, Inbred C57BL; Nociception; Nociceptors; Sodium Channel Blockers; Synaptic Transmission; Tetrodotoxin; Time Factors; Trigeminal Nucleus, Spinal

2017
N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.
    Journal of neuroscience research, 2001, Mar-01, Volume: 63, Issue:5

    Mitochondrial uptake of Ca(2+) has recently been found to play an important role in glutamate-induced neurotoxicity (GNT) as well as in the activation of Ca(2+)-dependent molecules, such as calmodulin and neuronal nitric oxide synthase (nNOS), in the cytoplasm. Prolonged exposure to glutamate injures motor neurons predominantly through the activation of Ca(2+)/calmodulin-nNOS, as previously reported, and is, in part, associated with the pathogenesis of amyotrophic lateral sclerosis (ALS). In the present study, we investigated how mitochondrial uptake of Ca(2+) is involved in GNT in spinal motor neurons. Acute excitotoxicity induced by exposure to 0.5 mM glutamate for 5 min was found in both motor and nonmotor neurons in cultured spinal cords from rat embryos and was dependent on extracellular Ca(2+) and on N-methyl-D-aspartate (NMDA) receptor activation. Mitochondrial uncouplers markedly blocked acute excitotoxicity, and membrane-permeable superoxide dismutase mimics attenuated acute excitotoxicity induced by glutamate and NMDA but not by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or kainate. Fluorimetric analysis showed that mitochondrial Ca(2+) was elevated promptly with subsequent accumulation of reactive oxygen species (ROS) in the mitochondria. An NMDA receptor antagonist and a mitochondrial uncoupler eliminated the increase in fluorescence of mitochondrial Ca(2+) and ROS indicators. These data indicate that acute excitotoxicity in spinal neurons is mediated by mitochondrial Ca(2+) overload and ROS generation through the activation of NMDA receptors. This mechanism is different from that of chronic GNT.

    Topics: 2,4-Dinitrophenol; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Calcium; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cells, Cultured; Cyclosporine; Dibucaine; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Fluoresceins; Fluorescent Dyes; Glutamic Acid; Heterocyclic Compounds, 3-Ring; Imidazoles; Kainic Acid; Mitochondria; Motor Neuron Disease; Motor Neurons; N-Methylaspartate; Nerve Tissue Proteins; Neurons; Neurotoxins; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Rhodamines; Spinal Cord; Superoxide Dismutase; Uncoupling Agents

2001
Effects of the N-methyl-D-aspartate antagonists on the rise in [Ca2+]i following depolarization in aged rat brain synaptosomes.
    Brain research, 1992, Jun-26, Volume: 583, Issue:1-2

    The effects of non-competitive NMDA antagonists, MK-801 and dextrorphan in relation to the rise in intracellular Ca2+ concentrations ([Ca2+]i) after stimulation with 15 mM K+ in whole brain synaptosomes from young (3 months old) and aged (24 months old) Fisher344 rats were examined. A fluorescent chelating agent, Rhod-2, was employed to monitor any alterations of K(+)-evoked [Ca2+]i. In young rats, the rise in [Ca2+]i following depolarization was affected by neither dextrorphan (1, 10, 100 microM) nor MK-801 (0.1, 1, 10 microM), while in aged rats, 1 microM dextrorphan and 0.1 microM MK-801 brought about a significant increase in [Ca2+]i following depolarization. In low Mg2+ medium, 10 microM MK-801 and 100 microM dextrorphan significantly inhibited the rise in [Ca2+]i after stimulation with 15 mM K+ in young rats, while neither dextrorphan nor MK-801 could affect the rise in [Ca2+]i significantly in aged rats. When 100 microM NMDA was applied in a medium containing 1.2 mM Mg2+, the rise in [Ca2+]i following depolarization was slightly inhibited by 1 microM MK-801 in young rats, but it was not inhibited significantly by dextrorphan. In aged rats, both 100 microM dextrorphan and 10 microM MK-801 strongly inhibited the rise in [Ca2+]i following depolarization in the presence of 100 microM NMDA. Instead of NMDA, when 100 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a non-NMDA receptor agonist, was applied, dextrorphan did not inhibit the rise in [Ca2+]i. In low Mg2+ medium, 100 microM NMDA potentiated the inhibitory effect of 10 microM dextrorphan in young rats, while 100 microM dextrorphan or MK-801 did not show any further inhibition by adding 100 microM NMDA. The addition of 100 microM AMPA did not affect the effect of dextrorphan in a low Mg2+ medium in young rats. These results suggest that NMDA antagonist-mediated [Ca2+]i homeostatic system may alter through aging. In addition, the findings that NMDA potentiated the inhibitory effect of NMDA antagonist, which being further potentiated by aging or lowered extrasynaptosomal Mg2+, indicate the possibility that the Mg2+ block to NMDA receptors might be attenuated through aging.

    Topics: Aging; Animals; Brain; Calcium; Dextrorphan; Dizocilpine Maleate; Fluorescent Dyes; Heterocyclic Compounds, 3-Ring; Magnesium; Male; Membrane Potentials; N-Methylaspartate; Potassium; Rats; Rats, Inbred F344; Receptors, N-Methyl-D-Aspartate; Spectrometry, Fluorescence; Synaptosomes; Time Factors

1992