dizocilpine-maleate and preclamol

dizocilpine-maleate has been researched along with preclamol* in 16 studies

Other Studies

16 other study(ies) available for dizocilpine-maleate and preclamol

ArticleYear
Antagonism of NMDA receptors by sigma receptor ligands attenuates chemical ischemia-induced neuronal death in vitro.
    European journal of pharmacology, 2002, Nov-29, Volume: 455, Issue:2-3

    We investigated the effects of sigma receptor ligands on neuronal death induced by chemical ischemia using primary cultures of rat cerebral cortical neurons. The induction of chemical ischemia by sodium azide and 2-deoxy-D-glucose led to delayed neuronal death in a time- and concentration-dependent manner, as determined by trypan blue exclusion. The neurotoxicity was inhibited by N-methyl-D-aspartate (NMDA) receptor antagonists, indicating the involvement of glutamate. The sigma receptor ligands (+)-N-allylnormetazocine ((+)-SKF10,047) and haloperidol, but not carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), prevented chemical ischemia-induced neurotoxicity in a concentration-dependent manner. The protective effects of (+)-SKF10,047 and haloperidol were not affected by the sigma receptor antagonists. (+)-SKF10,047 and haloperidol, but not carbetapentane and (+)-3PPP, inhibited the glutamate-induced increase in intracellular Ca(2+), and the inhibitory effects were not attenuated by sigma receptor antagonists. These results suggest that direct interaction with NMDA receptors but not sigma receptors is crucial to the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

    Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Cell Hypoxia; Cell Survival; Cells, Cultured; Cerebral Cortex; Cyclopentanes; Deoxyglucose; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fetus; Glucose; Glutamates; Haloperidol; Neurons; Phenazocine; Piperidines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Receptors, sigma; Sodium Azide

2002
Influence of 3-PPP, a sigma receptor ligand, on the anticonvulsive action of conventional antiepileptic drugs.
    Pharmacological research, 1999, Volume: 40, Issue:6

    (+)-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine (3-PPP; a sigma receptor ligand), administered at 30 mg kg-1, 30 min before the test, significantly decreased the electroconvulsive threshold in mice, being ineffective in lower doses. 3-PPP (20 mg kg-1) diminished the protective activity of diphenylhydantoin, phenobarbital and valproate, but not that of carbamazepine against maximal electroshock. The effect of 3-PPP upon the electroconvulsive threshold and the 3-PPP-induced inhibition of the protective action of antiepileptics was reversed by haloperidol (0.5 mg kg-1). Moreover, 3-PPP did not alter the total and free plasma levels of antiepileptic drugs, so a pharmacokinetic interaction is not probable. The combined treatment of 3-PPP with antiepileptic drugs, providing a 50% protection against maximal electroshock, did not affect motor performance in mice, although resulted in significant long-term memory deficits. Our data indicate that sigma receptor-mediated events may play some role in seizure processes in the central nervous system and can modulate the protective activity of some conventional antiepileptic drugs.

    Topics: Animals; Anticonvulsants; Avoidance Learning; Dizocilpine Maleate; Female; Guanidines; Mice; Phenobarbital; Piperidines; Receptors, N-Methyl-D-Aspartate; Receptors, sigma; Valproic Acid

1999
Effects of phencyclidine (PCP) and (+)MK-801 on sensorimotor gating in CD-1 mice.
    Progress in neuro-psychopharmacology & biological psychiatry, 1998, Volume: 22, Issue:1

    1. Male CD-1 mice were tested for prepulse inhibition (PPI) following administration of PCP and the PCP site ligand, (+)MK-801, as well as the dopamine (DA) agonist (-)-apomorphine and DA releaser d-amphetamine. Similar to reports in rats, PCP (0.36-36.0 mumol/kg), (+)MK-801 (0.03-3.0 mumol/kg), (-)-apomorphine (3.3 and 10.0 mumol/kg) and d-amphetamine (3.0 and 8.0 mumol/kg) significantly reduced PPI when administered prior to testing. 2. Because PCP also binds to sigma receptors, the authors tested the sigma ligand (+)-3-PPP at (118 mumol/kg) which marginally increased the PPI. 3. Haloperidol (1.1 mumol/kg) pretreatment attenuated the reduction in PPI following (-)-apomorphine (10.0 mumol/kg), however no effects of haloperidol or clozapine pretreatment on (+)MK-801 disruption of PPI were observed. 4. Because of the pharmacological similarities between mouse data and previously published rat data, it is concluded that the mouse is a viable alternative to the rat for testing PPI.

    Topics: Acoustic Stimulation; Animals; Apomorphine; Clozapine; Dextroamphetamine; Dizocilpine Maleate; Dopamine Agonists; Dose-Response Relationship, Drug; Haloperidol; Male; Mice; Mice, Inbred Strains; Phencyclidine; Piperidines; Rats; Receptors, sigma; Reflex, Startle; Species Specificity

1998
Effect of PCP and sigma ligands on both noradrenaline- and electrically-induced contractions and on [3H]-noradrenaline uptake in rat vas deferens.
    Journal of autonomic pharmacology, 1998, Volume: 18, Issue:4

    1. Electrically induced contractions of the epididymal portion of rat vas deferens were potentiated in concentration-dependent manner (0.1-30 microM) by different sigma and PCP receptor ligands (PCP, TCP, (+)-MK-801, dextromethorphan and (+)-3-PPP); dextrorphan did it in a minor extent. 2. Sigma and PCP receptor ligands also potentiated the effect of noradrenaline, inducing a reduction of the noradrenaline EC50 value in the rat vas deferens. The rank order of potencies was: PCP > TCP > (+)-3-PPP > (+)-MK-801 > dextrorphan > > > dextrometorphan. 3. In contrast, haloperidol (1 microM), a sigma receptor ligand, inhibited both the neurogenic and noradrenaline-induced responses in this tissue. 4. The effect of PCP and sigma receptor ligands on noradrenaline uptake was evaluated. All compounds tested, including haloperidol, inhibited the tritiated noradrenaline incorporation to the tissue. IC50 values were in the micromolar range, between 1.09 microM for dextrophan and 18 microM for dextrometorphan. 5. It is concluded that a direct interaction with the noradrenaline uptake system is involved in the potentiating effect of some sigma and PCP receptor ligands in the epididymal portion of rat vas deferens.

    Topics: Adrenergic alpha-Agonists; Animals; Dextromethorphan; Dizocilpine Maleate; Dopamine Agonists; Electric Stimulation; Excitatory Amino Acid Antagonists; Ligands; Male; Muscle Contraction; Neuroprotective Agents; Norepinephrine; Phencyclidine; Piperidines; Rats; Rats, Sprague-Dawley; Receptors, Phencyclidine; Receptors, sigma; Tritium; Vas Deferens

1998
In vivo functional interaction between phencyclidine binding sites and sigma receptors to produce head-weaving behavior in rats.
    European journal of pharmacology, 1996, Dec-30, Volume: 318, Issue:2-3

    To investigate the in vivo functional interaction between phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP) binding sites and sigma receptors, we examined the effects of sigma receptor ligands on stereotyped head-weaving behavior induced by PCP, a putative PCP/sigma receptor ligand, and (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclo-hepten-5,10-imin e ((+)-MK-801; dizocilpine), a selective PCP binding site ligand, in rats. PCP (7.5 mg/kg, i.p.)-induced head-weaving behavior was inhibited by both N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine (NE-100; 0.03-1.0 mg/kg, p.o.), a selective sigma1 receptor ligand, and alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperidine butanol (BMY-14802; 3 and 10 mg/kg, p.o.), a prototype sigma receptor ligand, in a dose-dependent manner, whereas NE-100 (0.1-1.0 mg/kg, p.o.) and BMY-14802 (3 and 10 mg/kg, p.o.) did not inhibit dizocilpine (0.25 mg/kg, s.c.)-induced head-weaving behavior. These results suggest that NE-100 and BMY-14802 act via sigma receptors. Dizocilpine-induced head-weaving behavior was potentiated by 1,3-di-o-tolyl-guanidine (DTG; 0.03-0.3 microg/kg, i.v.) and (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP; 3 and 6 mg/kg, i.p.), sigma1/sigma2 receptor ligands, as well as by (+)-N-allyl-normetazocine ((+)-SKF-10,047: 8 mg/kg, i.p.), a sigma1 receptor ligand, while DTG (0.3 microg/kg, i.v.), (+)-3-PPP (6 mg/kg, i.p.) and (+)-SKF-10,047 (8 mg/kg, i.p.) did not induce this behavior. Potentiation of dizocilpine-induced head-weaving behavior by DTG (0.3 microg/kg, i.v.), (+)-3-PPP (6 mg/kg, i.p.) and (+)-SKF-10,047 (8 mg/kg, i.p.) was completely blocked by NE-100 (0.1 mg/kg, p.o.) and BMY-14802 (10 mg/kg, p.o.). These results suggest that PCP binding sites and sigma receptors are involved in PCP-induced head weaving behavior, and that sigma1 receptors play an important role in modulation of the head-weaving behavior.

    Topics: Animals; Anisoles; Behavior, Animal; Binding Sites; Dizocilpine Maleate; Guanidines; Male; Phenazocine; Piperidines; Propylamines; Pyrimidines; Rats; Rats, Wistar; Receptors, Phencyclidine; Receptors, sigma

1996
The sigma receptor ligand (+/-)-BMY 14802 prevents methamphetamine-induced dopaminergic neurotoxicity via interactions at dopamine receptors.
    The Journal of pharmacology and experimental therapeutics, 1994, Volume: 269, Issue:1

    The possibility that compounds which interact with the putative sigma receptor might influence the dopaminergic neuropathology produced by the administration of methamphetamine (METH) to mice was investigated. (+/-)-BMY 14802 [alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine-butanol hydrochloride] attenuated METH-induced dopaminergic neuropathology whereas several other sigma-acting compounds such as R-(+)-3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride, 1,3-di-o-tolyl-guanidine, rimcazole, clorgyline or (-)-butaclamol did not alter neurotoxicity produced by this central nervous system stimulant. (-)-BMY 14802, which has a lower affinity for the sigma site than (+)-BMY 14802, was more potent than (+)-BMY 14802 in antagonizing METH-induced neuropathology. In addition, the ketone metabolite (BMY 14786; alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine-butanone hydrochloride), which is a major metabolite formed from (-)-BMY 14802, also attenuated the METH-induced effects. (+/-)-BMY 14802 pretreatment of mice prevented the reduction in D1 and D2 dopamine receptor number produced by the systemic administration of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline and demonstrates that (+/-)-BMY 14802 and/or its metabolites interact with the dopamine receptor subtypes. Taken together, these findings suggest that the protective effect of (+/-)-BMY 14802 against METH-induced neuropathology is mediated, at least in part, through dopamine receptor antagonism. Furthermore, the failure of other sigma-acting compounds to alter METH-induced neurotoxicity indicates that the putative sigma receptor is unlikely to be an important mediator in this type of neuropathology.

    Topics: Animals; Anticonvulsants; Antipsychotic Agents; Brain Diseases; Butaclamol; Carbazoles; Dizocilpine Maleate; Dopamine; Dopamine Agents; Drug Interactions; Drug Synergism; Guanidines; Ligands; Male; Methamphetamine; Mice; MPTP Poisoning; Neostriatum; Piperidines; Psychotropic Drugs; Pyrimidines; Receptors, Dopamine; Receptors, sigma; Stereoisomerism; Tyrosine 3-Monooxygenase

1994
Further characterization of [3H]ifenprodil binding in rat brain.
    European journal of pharmacology, 1994, Jan-01, Volume: 266, Issue:1

    The present study was undertaken to characterize [3H]ifenprodil binding in rat brain. [3H]Ifenprodil showed saturable, high-affinity binding at 4 degrees C. Specific binding, defined with 10 microM ifenprodil as a competitor, was inhibited biphasically by the s receptor ligands, GBR 12909, 1,3-di-o-tolylguanidine (DTG), and (+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP). At 4 degrees C, 3 microM GBR 12909, which inhibited about 50% of specific binding of [3H]ifenprodil was used to mask sigma receptors. Under these conditions, specific binding of [3H]ifenprodil was inhibited potently by ifenprodil, SL 82.0715, poly(L-arginine), poly(L-lysine), neomycin, ruthenium red, spermine, arcaine and spermidine. In the presence of 3 microM GBR 12909, Zn2+ and Mg2+ partially inhibited specific binding of [3H]ifenprodil at 4 degrees C. In contrast, in the absence of GBR 12909, at 37 degrees C specific binding of [3H]ifenprodil was partially inhibited by Zn2+, but not by Mg2+. The anatomical distribution of [3H]ifenprodil binding at 4 degrees C (GBR 12909 included) in rat brain closely paralleled that of [3H]MK-801 (dizocilpine) binding (r = 0.971, P < 0.005). Without GBR 12909, specific [3H]ifenprodil binding at 37 degrees C was inhibited potently by sigma ligands. In the presence of 3 microM GBR 12909, [3H]ifenprodil binding at 4 degrees C was highest in synaptosomal and myelin fractions; however, without GBR 12909, [3H]ifenprodil binding at 37 degrees C was highest in microsomal and myelin fractions, consistent with the subcellular distribution of sigma receptors. The results suggest that, in the presence of 3 microM GBR 12909, at 4 degrees C, [3H]ifenprodil binds to sites that are sensitive to polyamines and related compounds; and that without GBR 12909, at 37 degrees C, [3H]ifenprodil interacts with sigma receptors in rat brain.

    Topics: Adrenergic alpha-Antagonists; Animals; Binding Sites; Binding, Competitive; Brain; Dizocilpine Maleate; Dopamine Agents; Dose-Response Relationship, Drug; Guanidines; In Vitro Techniques; Male; Neurotransmitter Uptake Inhibitors; Piperazines; Piperidines; Rats; Rats, Inbred F344; Receptors, sigma

1994
Characterization of [3H]desmethylimipramine binding in bovine adrenal medulla: interactions with sigma- and (or) phencyclidine-receptor ligands.
    Canadian journal of physiology and pharmacology, 1992, Volume: 70, Issue:11

    High-affinity binding sites (apparent KD 2.87 nM) for [3H]desmethylimipramine ([3H]DMI), have been demonstrated and characterized in membrane preparations of bovine adrenal medulla. The binding of [3H]DMI improved upon pretreatment of the membrane with KCl and was saturable, sodium dependent, and potently inhibited by nisoxetine and imipramine. [3H]DMI binding was also inhibited by various phencyclidine (PCP)- and (or) sigma-receptor ligands, with the following order of potency: haloperidol > rimcazole > (-)-butaclamol > dextromethorphan > MK-801 > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP) > PCP > N-(2-thienyl)cyclohexyl-3,4-piperidine (TCP) > (+)-SKF-10047 > (-)-SKF-10047. The inhibition produced by sigma ligands was not attributed to stimulation of either sigma 1- or sigma 2-receptors, owing to inactivity of the selective sigma-receptor ligands (+)-pentazocine and 1,3-di(2-tolyl)guanidine (DTG). The inhibition of [3H]DMI binding by sigma- and PCP-receptor ligands was not attributed to PCP1- or PCP2-receptor stimulation, owing to the decreased potency (100-fold) of these ligands in [3H]DMI assays compared with the affinity for brain PCP1 sites, and the ineffectiveness of the PCP2-ligand N-(1-(2-benzo(b)thiophenyl)cyclohexyl)piperidine (BTCP). Scatchard analysis of the inhibition by the sigma-ligands haloperidol and (+)-3-PPP, as well as the PCP1 receptor ligand MK-801, demonstrated noncompetitive interaction with the site bound by [3H]DMI. These studies indicate that bovine adrenomedullary membranes possess a specific receptor for the noradrenaline uptake inhibitor [3H]DMI, which is sensitive to allosteric modulation produced by PCP and sigma-ligands.

    Topics: Adrenal Medulla; Animals; Binding Sites; Cattle; Desipramine; Dextromethorphan; Dizocilpine Maleate; Phenazocine; Phencyclidine; Piperidines; Potassium Chloride; Receptors, Opioid, delta; Receptors, Phencyclidine; Tranquilizing Agents

1992
Sigma ligand-induced emesis in the pigeon.
    Pharmacology, biochemistry, and behavior, 1992, Volume: 41, Issue:1

    Pigeons were fed a fixed amount of grain-based feed and behavior was observed after administration of doses of ditolyguanidine (DTG), (+)-3-(3-hydroxyphenyl)-N-(1-propyl)-piperidine [(+)-3-PPP], dextromethorphan, haloperidol, (+)-N-allylnormetazocine (NANM), alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine-butanol (BMY-14802) apomorphine, pentobarbital, propranolol, and MK-801. Of the drugs tested, DTG, dextromethorphan, and (+)-3-PPP each produced dose-related increases in the percentage of pigeons exhibiting an emetic response. The emetic response produced by DTG was antagonized by haloperidol and BMY-14802 but not by propranolol. These observations suggest that the emetic response in the pigeon may be mediated by sigma sites and is unlikely to be mediated by phencyclidine receptors.

    Topics: Animals; Apomorphine; Columbidae; Dextromethorphan; Dizocilpine Maleate; Dopamine Agents; Guanidines; Haloperidol; Male; Pentobarbital; Phenazocine; Piperidines; Propranolol; Psychotropic Drugs; Pyrimidines; Receptors, Opioid; Receptors, sigma; Vomiting

1992
Sigma-receptors: implication for the control of neuronal activity of nigral dopamine-containing neurons.
    European journal of pharmacology, 1991, Aug-29, Volume: 201, Issue:2-3

    Using extracellular single unit recording techniques, we analyzed the significance of sigma-receptors in the neuronal control of dopamine (DA) neurons in the zona compacta of the substantia nigra. Administration of racemic trans-9-methoxy-4-benzyl-1,2,3,4,4a,5,6,10b-octahydrobenzo[f]quinoline (HW 173), a drug displaying high and specific affinity for sigma-receptors, was not associated with any change in the firing rate of DA neurons. Furthermore, pretreatment with the drug did not affect the dose-response curve for the inhibitory effects of the DA receptor agonist apomorphine or the mixed DA agonist/sigma-receptor ligand (+)-3-(3-hydroxyphenyl)-N-1-propyl)piperidine ((+)-3-PPP). In contrast to the effects of HW 173 on the DA cell firing rate, the firing pattern of the DA cells was significantly changed by the drug. The data suggest that sigma-receptors do not play a pivotal role in the control of the firing rate of DA neurons in the substantia nigra. Rather, they may have a function in the regulation of the firing pattern of these neurons.

    Topics: Animals; Apomorphine; Binding, Competitive; Dizocilpine Maleate; Dopamine; Dopamine Agents; Male; Neurons; Piperidines; Quinolines; Radioligand Assay; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma; Stereotaxic Techniques; Substantia Nigra

1991
Interactions of sigma and phencyclidine receptor ligands with the norepinephrine uptake carrier in both rat brain and rat tail artery.
    The Journal of pharmacology and experimental therapeutics, 1991, Volume: 256, Issue:2

    The interaction of several sigma and PCP receptor ligands with the norepinephrine uptake carrier was investigated in the rat tail artery and brain. These ligands include haloperidol; (+)- and (-) 3-(3-hydroxy- phenyl)-N-(1-propyl)piperidine (3-PPP), (+/-)-BMY 14802, [(+/-) alpha-(4-fluoro- phenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine butanol]; (+)-SKF 10047, [(+/-)-N-allyl-N-normetazocine]; 1,3-di-ortho-tolyl-guanidine; rimcazole (BW 234U), [cis-9-[3-(3,5-dimethyl-1-piperazinyl)propyl] carbazole dihydrochloride]; and MK 801, [(+)-5-methyl-10,1 1-dihydro-5H-dibenzo[a, d]cyclohepten-5, 10-imine maleate]. Our results show that all ligands used, except 1,3-di-ortho-tolyl-guanidine, inhibit both neuronal [3H]norepinephrine accumulation in the rat tail artery and specific [3H] desmethylimipramine binding in the rat brain. Except for (+)-SKF 10047, the order of potency of the ligands used for inhibiting neuronal [3H]norepinephrine accumulation in the rat tail artery was similar to that measured for inhibition of specific [3H]desmethylimipramine binding in the rat brain. Despite these similarities, our results also suggest that haloperidol, (+)- and (-)3-PPP, MK 801, rimcazole and cocaine interact with the [3H]norepinephrine site in the rat tail artery and with the [3H]desmethylimipramine binding site in the rat brain in a complex fashion. These studies demonstrate an important action on the norepinephrine carrier by these sigma and PCP ligands in the rat tail artery and brain.

    Topics: Animals; Biological Transport; Brain; Desipramine; Dizocilpine Maleate; Male; Norepinephrine; Phenazocine; Piperidines; Rats; Rats, Inbred Strains; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma; Tail; Vasoconstriction

1991
Differential effects of sigma and phencyclidine receptor ligands on learning.
    European journal of pharmacology, 1990, Apr-10, Volume: 179, Issue:1-2

    Several phencyclidine (PCP) and sigma receptor ligands were examined for their effects on a single trial passive avoidance test in rats. Rats were administered the PCP receptor ligands (+)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-im ine maleate (MK-801), PCP, ketamine or the sigma receptor ligands (+)-N-allylnormetazocine ((+)-NANM), (+)-pentazocine, (+)-3-(3-hydroxyphenyl)-N-n-propylpiperidine ((+)-3-PPP) or 1,3-Di(2-[5-3H]tolyl)guanidine (DTG) subcutaneously prior to acquisition of the passive avoidance response, and tested 24 h later for retention. MK-801 (0.1-0.3 mg/kg), PCP (0.54-1.7 mg/kg), ketamine (10.0-17.2 mg/kg) and (+)-N-allylnormetazocine (5.4-10.0 mg/kg) produced significant memory deficits. (+)-Pentazocine (54 mg/kg) and (+)-3-PPP (30 mg/kg) also produced retention deficits, but at significantly higher doses. DTG (0.3-3.0 mg/kg s.c.) had no effect on retention. There was a positive correlation between production of retention deficits and the compounds' PCP receptor binding affinity. The results suggest that the sigma receptor is not involved in learning the passive avoidance response.

    Topics: Animals; Avoidance Learning; Dibenzocycloheptenes; Dizocilpine Maleate; Dose-Response Relationship, Drug; Ketamine; Ligands; Male; Memory; Pentazocine; Phenazocine; Phencyclidine; Piperidines; Rats; Rats, Inbred Strains; Receptors, Neurotransmitter; Receptors, Phencyclidine; Retention, Psychology

1990
Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary.
    Endocrinology, 1989, Volume: 124, Issue:3

    We have used a variety of selective radioligands to identify and localize sigma- and phencyclidine (PCP)-binding sites in rat endocrine organs. [3H]Haloperidol-labeled sigma-receptors were identified in membrane homogenates of rat pituitary, adrenal, testis, and ovary which had kinetic and pharmacological characteristics similar to those of the well characterized sigma-receptors in rat cerebellum. The highest density of sigma-receptors was present in the ovary, with progressively lower densities present in the testis, pituitary, adrenal, and cerebellum, respectively. In autoradiographic studies, sigma-receptors [labeled with d-3-(3-hydroxyphenyl)N-(1-propyl-2,3-[3H]piperidine or [3H]1,3-di-(2-tolyl)guanidine] were discretely localized within the endocrine tissues. In the pituitary, the highest density of sigma-receptors was found in the anterior lobe. In the adrenal, sigma-receptors were localized primarily in the cortex. In the testis, sigma-receptors were present in highest concentrations in the ductuli efferentes and ductus epididymis; lower densities of binding sites were present in the seminiferous tubules, and no binding was seen in the interstitial tissue. In the ovary, sigma-receptors were localized in high density in the maturing follicles, and lower densities were present in resting follicles. After hypophysectomy, there were relative increases in the densities of sigma receptors in the remaining tissue in the adrenal gland and testis. In contrast, hypophysectomy resulted in a marked depletion of sigma-binding sites in the ovary. The data from hypophysectomized rats indicate that the highest densities of sigma-receptors in the ovary are localized to (LH-dependent) maturing follicles, while sigma-binding sites in adrenal and testis are localized to cells that are not dependent on trophic maintenance by the pituitary. In contrast, high affinity PCP receptors were not detected in pituitary, adrenal, testis, or ovary either by homogenate binding studies with 3,4-[3H]N-[1-(2-thienyl)cyclohexyl]piperidine or in vitro autoradiography using 3,4-[3H]N-[1-(2-thienyl)cyclohexyl]piperidine and d-[3H]5-methyl-10,11-dihydro-5H-dibenzo-[a,d] + cyclohepten-5,10-imine. In summary, the data suggest that the reported endocrine effects of PCP and the prototypic sigma-receptor agonist N-allylnormetazocine are probably mediated either through direct action on sigma-receptors in the pituitary and/or target endocrine organs or by actions on sigma- and/or PCP receptors

    Topics: Adrenal Glands; Animals; Autoradiography; Brain Chemistry; Cell Membrane; Dibenzocycloheptenes; Dizocilpine Maleate; Female; Haloperidol; Hypophysectomy; Male; Ovary; Phencyclidine; Piperidines; Pituitary Gland; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma; Testis; Tissue Distribution

1989
Differentiation of phencyclidine and sigma receptor types affecting the central inspiratory termination mechanism in cat.
    Life sciences, 1989, Volume: 45, Issue:14

    The effects of 1) the phencyclidine receptor ligand TCP, 2) sigma receptor ligands (+)3-PPP and DTG, and 3) N-methyl-D-aspartate receptor blockers MK-801 and dextrorphan were determined on a brainstem mechanism which controls the termination of the inspiratory phase of the breathing cycle. Inspiratory bursts were recorded from the phrenic nerve in decerebrate paralyzed cats ventilated by means of a phrenic driven servoventilator. The central mechanism which terminates inspiration was tested by withholding lung inflation, thus suppressing the contribution of the vagal feedback from the lungs to inspiratory termination. TCP increased the duration of test inspiration (tTi) by 17% at 0.03 mg/kg and by 14-fold (from 1.6 to 23 s) at 1 mg/kg. With dextrorphan, tTi was significantly increased at 3 mg/kg. In contrast, (+)3-PPP and DTG did not increase tTi at doses up to 10 mg/kg, although MK-801 (0.03 mg/kg), given after the sigma ligands, increased tTi by 59-90%. It is concluded that phencyclidine but not sigma receptor ligands block the central mechanism which terminates inspiration and that the likely site of action is the NMDA receptor complex.

    Topics: Animals; Brain Stem; Cats; Decerebrate State; Dextrorphan; Dibenzocycloheptenes; Dizocilpine Maleate; Guanidines; Phencyclidine; Phrenic Nerve; Piperidines; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma; Respiration

1989
Electrophysiological effects of selective sigma-receptor agonists, antagonists, and the selective phencyclidine receptor agonist MK-801 on midbrain dopamine neurons.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 1989, Volume: 2, Issue:3

    Extracellular single unit recording techniques were used to study the effects of selective sigma-receptor agonist [(+)-3-PPP, (+)-pentazocine, and DTG] and selective sigma-receptor antagonists (BMY 14802 and Rimcazole) on dopamine neurons of the substantia nigra. Intravenous (IV) administration of sigma agonists decreased, whereas IV administration of the sigma antagonist BMY-14802 increased the firing rate of dopamine neurons. The other sigma antagonist Rimcazole produced inconsistent changes in dopamine unit activity. These data, in conjunction with anatomic data suggesting sigma receptor localization on dopamine neurons in the substantia nigra (Gundlach et al: J Neurosci 6:1757-1770, 1986; Graybiel et al: Soc Neurosci Abstr 13:28, 1987) demonstrate a relationship of the sigma receptor with the dopamine system and further suggest a model system to study agonist-antagonist interactions of sigma ligands. The selective phencyclidine (PCP) agonist MK-801 was equipotent to PCP in regard to stimulatory properties on dopamine neurons. However, the relative potencies do not correspond to their relative binding affinities, suggesting that non-PCP-receptor properties may mediate this effect.

    Topics: Animals; Anti-Anxiety Agents; Anticonvulsants; Antipsychotic Agents; Carbazoles; Cell Membrane; Dibenzocycloheptenes; Dizocilpine Maleate; Dopamine; Dopamine Agents; Male; Neurons; Pentazocine; Phencyclidine; Piperidines; Pyrimidines; Rats; Rats, Inbred Strains; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma; Substantia Nigra

1989
Sigma and PCP receptors in human frontal cortex membranes.
    European journal of pharmacology, 1988, Sep-23, Volume: 154, Issue:3

    Topics: Brain; Dibenzocycloheptenes; Dizocilpine Maleate; Humans; In Vitro Techniques; Membranes; Phencyclidine; Piperidines; Receptors, Neurotransmitter; Receptors, Opioid; Receptors, Phencyclidine; Receptors, sigma

1988