dizocilpine-maleate has been researched along with naltrindole* in 3 studies
3 other study(ies) available for dizocilpine-maleate and naltrindole
Article | Year |
---|---|
Evidence for the involvement of the opioid system in the antidepressant-like effect of folic acid in the mouse forced swimming test.
The opioid system has been implicated in major depression and in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of the water-soluble B-vitamin folic acid in the forced swimming test (FST). The effect of folic acid (10 nmol/site, i.c.v.) was prevented by the pretreatment of mice with naloxone (1 mg/kg, i.p., a nonselective opioid receptor antagonist), naltrindole (3 mg/kg, i.p., a selective delta-opioid receptor antagonist), naloxonazine (10 mg/kg, i.p., a selective mu(1)-opioid receptor antagonist, 24 h before), but not with naloxone methiodide (1 mg/kg, s.c., a peripherally acting opioid receptor antagonist). In addition, a sub-effective dose of folic acid (1 nmol/site, i.c.v.) produced a synergistic antidepressant-like effect in the FST with a sub-effective dose of morphine (1 mg/kg, s.c.). A further approach was designed to investigate the possible relationship between the opioid system and NMDA receptors in the mechanism of action of folic acid in the FST. Pretreatment of the animals with naloxone (1 mg/kg, i.p.) prevented the synergistic antidepressant-like effect of folic acid (1 nmol/site, i.c.v.) and MK-801 (0.001 mg/kg, i.p., a non-competitive NMDA receptor antagonist). Together the results firstly indicate that the anti-immobility effect of folic acid in the FST is mediated by an interaction with the opioid system (mu(1) and delta), likely dependent on the inhibition of NMDA receptors elicited by folic acid. Topics: Analgesics, Opioid; Animals; Antidepressive Agents; Anxiety; Behavior, Animal; Disease Models, Animal; Dizocilpine Maleate; Drug Combinations; Excitatory Amino Acid Antagonists; Exploratory Behavior; Folic Acid; Mice; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Swimming | 2009 |
Nonopioidergic mechanism mediating morphine-induced antianalgesia in the mouse spinal cord.
Intrathecal (i.t.) pretreatment with a low dose (0.3 nmol) of morphine causes an attenuation of i.t. morphine-produced analgesia; the phenomenon has been defined as morphine-induced antianalgesia. The opioid-produced analgesia was measured with the tail-flick (TF) test in male CD-1 mice. Intrathecal pretreatment with low dose (0.3 nmol) of morphine time dependently attenuated i.t. morphine-produced (3.0 nmol) TF inhibition and reached a maximal effect at 45 min. Intrathecal pretreatment with morphine (0.009-0.3 nmol) for 45 min also dose dependently attenuated morphine-produced TF inhibition. The i.t. morphine-induced antianalgesia was dose dependently blocked by the nonselective mu-opioid receptor antagonist (-)-naloxone and by its nonopioid enantiomer (+)-naloxone, but not by endomorphin-2-sensitive mu-opioid receptor antagonist 3-methoxynaltrexone. Blockade of delta-opioid receptors, kappa-opioid receptors, and N-methyl-D-aspartate (NMDA) receptors by i.t. pretreatment with naltrindole, nor-binaltorphimine, and (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), respectively, did not affect the i.t. morphine-induced antianalgesia. Intrathecal pretreatment with antiserum against dynorphin A(1-17), [Leu]-enkephalin, [Met]-enkephalin, beta-endorphin, cholecystokinin, or substance P also did not affect the i.t. morphine-induced antianalgesia. The i.t. morphine pretreatment also attenuated the TF inhibition produced by opioid muagonist [D-Ala2, N-Me-Phe4,Gly-ol5]-enkephalin, delta-agonist deltorphin II, and kappa-agonist U50,488H. It is concluded that low doses (0.009-0.3 nmol) of morphine given i.t. activate an antianalgesic system to attenuate opioid mu-, delta-, and kappa-agonist-produced analgesia. The morphine-induced antianalgesia is not mediated by the stimulation of opioid mu-, delta-, or kappa-receptors or NMDA receptors. Neuropeptides such as dynorphin A(1-17), [Leu]-enkephalin, [Met]-enkephalin, beta-endorphin, cholecystokinin, and substance P are not involved in this low-dose morphine-induced antianalgesia. Topics: Analgesia; Animals; beta-Endorphin; Dizocilpine Maleate; Drug Interactions; Drug Tolerance; Dynorphins; Enkephalins; Male; Mice; Morphine; Naloxone; Naltrexone; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord; Substance P | 2004 |
Activity at phencyclidine and mu opioid sites mediates the hyperalgesic and antinociceptive properties of the N-terminus of substance P in a model of visceral pain.
Substance P, a putative neurotransmitter or neuromodulator of nociception or pain in the spinal cord, exhibits both antinociceptive and hyperalgesic properties. Investigators have shown that the N-terminal metabolite of substance P, substance P(1-7), produces naloxone-reversible antinociception when given supraspinally and systemically in mice and hyperalgesia when injected intrathecally in rats. The goal of our investigation was to identify the receptors mediating these actions of substance P(1-7) at the initial site of release of substance P, i.e. in the spinal cord. Thirty minutes after intrathecal injection, substance P(1-7) produced naloxone-reversible antinociception in a dose-dependent manner in the abdominal stretch assay. When administered with naloxone, substance P(1-7) produced hyperalgesia 5 and 10 min after injection, which was inhibited by dizocilpine (MK-801), a phencyclidine ligand and non-competitive antagonist of N-methyl-D-aspartate. Antinociception was inhibited by the mu-selective opioid antagonist beta-funaltrexamine, but not by the mu 1-selective opioid antagonist naloxonazine or the delta-selective antagonist naltrindole, indicating a mu 2-opioid receptor-mediated effect. These findings suggest that the N-terminal portion of substance P may modulate nociception or pain, as demonstrated in the acetic acid abdominal stretch (writhing) assay, via activation of two different receptor systems. Substance P(1-7)-induced hyperalgesia is mediated by a phencyclidine-sensitive mechanism and antinociception involves activity at mu-opioid, most likely mu 2, receptors. Topics: Animals; Biological Assay; Disease Models, Animal; Dizocilpine Maleate; Hyperalgesia; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Peptide Fragments; Phencyclidine; Receptors, Opioid, mu; Spinal Cord; Substance P | 1994 |