dizocilpine-maleate and levoxadrol

dizocilpine-maleate has been researched along with levoxadrol* in 5 studies

Other Studies

5 other study(ies) available for dizocilpine-maleate and levoxadrol

ArticleYear
Dizocilpine-like discriminative stimulus effects of low-affinity uncompetitive NMDA antagonists.
    Neuropharmacology, 1996, Volume: 35, Issue:12

    The dizocilpine-like discriminative stimulus effects of a variety of channel blocking (uncompetitive) N-methyl-D-aspartate (NMDA) receptor antagonists were examined in rats trained to discriminate dizocilpine (0.17 mg/kg, i.p) from saline in a two-lever operant procedure. The dissociative anesthetic-type NMDA antagonists dizocilpine (ED50 0.05 mg/kg), phencyclidine (ED50 3.4 mg/kg) and ketamine (ED50 14 mg/kg) showed complete substitution without producing significant decreases in response rates, whereas dexoxadrol (ED50 4.3 mg/kg) also produced complete substitution with a concomitant decrease (35%) in response rate. Similarly, the low-affinity antagonist memantine resulted in complete substitution (ED50 9.7 mg/kg) at doses that significantly reduced (68%) the response rate. All other low-affinity antagonists resulted in either partial or no substitution for the discriminative stimulus effects of dizocilpine at doses that significantly decreased average response rates. These include (ED50 values in parentheses) remacemide (29 mg/kg), the remacemide metabolite 1,2-diphenyl-2-propylamine (ARL 12495) (14 mg/kg), phencylcyclopentylamine (25 mg/kg), dextromethorphan (46 mg/kg), (+/-)-5-aminocarbonyl-10,11-dihydro -5H-dibenzo-[a,d]cyclohepten-5,10-imine (ADCI; no substitution) and levoxadrol (no substitution). We conclude that low-affinity uncompetitive NMDA antagonists have discriminative stimulus properties distinct from dissociative anesthetic-type uncompetitive NMDA antagonists. The lowest-affinity antagonists show virtually no substitution for dizocilpine, whereas the relatively more potent low-affinity antagonists (such as memantine) exhibit greater substitution, but complete substitution is obtained only at rate-reducing doses.

    Topics: Acetamides; Analysis of Variance; Anesthetics, Dissociative; Animals; Conditioning, Operant; Dextromethorphan; Dioxolanes; Discrimination Learning; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Ketamine; Male; Memantine; Phencyclidine; Piperidines; Rats; Receptors, N-Methyl-D-Aspartate

1996
Phencyclidine binds to blood platelets with high affinity and specifically inhibits their activation by adrenaline.
    The Biochemical journal, 1992, Jul-01, Volume: 285 ( Pt 1)

    The ion channel probe phencyclidine [1-(1-phenylcyclohexyl)piperidine; PCP] selectively inhibited aggregation, secretion and ultrastructural changes in platelets induced by adrenaline, but did not affect activation induced by other common platelet agonists such as alpha-thrombin, ADP, collagen or ionophore A23187. [3H]PCP bound to platelets with high affinity (Kd 134 +/- 33 nM; 3600 +/- 1020 sites/platelet), as did the thienyl analogue [3H]TCP (1-[1-(2-thienyl)cyclohexyl]piperidine). PCP binding to platelets was increased 3-4-fold in N-methylglucamine buffer in the absence of Na+ ions. Binding was unaffected by haloperidol and was only weakly inhibited (EC50 10-20 microM), without significant stereoselectivity by the two sets of stereoselective ligands, dexoxadrol/levoxadrol and (+)MK801/(-)MK801. Binding of PCP was not competed for by adrenaline or yohimbine. Only the high-affinity binding of [3H]PCP to platelets was blocked by prior treatment of the platelets with the covalent affinity probe Metaphit, and these platelets no longer aggregated in response to adrenaline although they responded normally to alpha-thrombin, ADP and collagen. These results suggest that platelets contain high-affinity receptors for PCP that can modulate adrenaline-induced platelet activation.

    Topics: Binding, Competitive; Blood Platelets; Cells, Cultured; Chromatography, Gel; Cyclic AMP; Dioxolanes; Dizocilpine Maleate; Epinephrine; Humans; Phencyclidine; Piperidines; Platelet Activation; Receptors, Neurotransmitter; Receptors, Phencyclidine

1992
Phencyclidine and related compounds evoked [3H]dopamine release from rat mesencephalic cell cultures by a mechanism independent of the phencyclidine receptor, sigma binding site, or dopamine uptake site.
    Canadian journal of physiology and pharmacology, 1990, Volume: 68, Issue:9

    At concentrations greater than or equal to 100 microM, phencyclidine (PCP), N-(1-(2-thienyl)-cyclohexyl)piperidine (TCP), and MK-801 induced [3H]dopamine release from dissociated cell cultures of rat mesencephalon. This release was Ca2+ independent and tetrodotoxin insensitive. Tetrodotoxin (2 microM) itself had no effect on spontaneous release of [3H]dopamine. [3H]Dopamine release was induced by 1,3-di(2-tolyl)guanidine, a sigma ligand, and by 4-aminopyridine (1-3 mM), a K+ channel blocker. No stereoselectivity was observed for [3H]dopamine release evoked by the dioxadrol enantiomers, dexoxadrol, and levoxadrol, or by enantiomers of N-allylnormetazocine (SKF 10,047). The selective dopamine uptake inhibitor 1-(2-[bis(4-fluorophenyl)methoxy]ethyl)-4-(3-phenylpropyl)piperazine dihydrochloride (GBR 12909) did not affect spontaneous or TCP-evoked [3H]dopamine release. Together, these data suggest that the dopamine-releasing effects of PCP-like compounds on the mesencephalic cells were not mediated by actions at the PCP receptor or sigma binding site, Ca2+, or Na+ channels, or at the high affinity dopamine uptake site. It remains conceivable that blocking actions of PCP-like compounds at voltage-regulated K+ channels may at least partly explain the response. These results are discussed in comparison with findings in intact brain.

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anticonvulsants; Binding Sites; Cells, Cultured; Dioxolanes; Dizocilpine Maleate; Dopamine; Dose-Response Relationship, Drug; Guanidines; Mesencephalon; N-Methylaspartate; Neurotransmitter Uptake Inhibitors; Phencyclidine; Piperazines; Piperidines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Phencyclidine; Sigma Factor; Tritium

1990
Inhibition of carbachol-induced inositol phosphate accumulation by phencyclidine, phencyclidine-like ligands and sigma agonists involves blockade of the muscarinic cholinergic receptor: a novel dioxadrol-preferring interaction.
    The Journal of pharmacology and experimental therapeutics, 1990, Volume: 254, Issue:3

    The effect of phencyclidine (PCP) on carbachol-induced phosphoinositol hydrolysis was examined in rat brain slices taken from cortex, caudate-putamen and hippocampus. In all three regions studied, PCP significantly inhibited carbachol-induced [3H]inositol phosphate accumulation working as low as 10(-6) M in the cerebral cortex. Because PCP has been shown to act at two sites, a PCP-site and a sigma site, various PCP-like agonists [levoxadrol (Lev), dexoxadrol (Dex) and MK-801 [(+)-5-methyl-10,11-dihydro- 5H-dibenzo(a,b)cyclo-hepaten-5, 10-imine maleate]] as well as sigma agonists [(+)-SKF10047 and 1,3-di(2-toly)guanidine (DTG) were examined for their effects on carbachol-induced phosphoinositol hydrolysis. All but MK-801 significantly inhibited the carbachol action; however, their order of potencies, Lev greater than or equal to Dex much greater than PCP greater than or equal to DTG greater than or equal to (+)-SKF10047 differed from those of other known PCP interactions at PCP and sigma sites. Inasmuch as it is known that PCP competes for binding at muscarinic sites, we examined the effects of PCP, Lev, Dex, DTG and MK-801 on the binding of L-[3H]-3-quinuclidinyl benzilate to its muscarinic site. All blocked L-[3H]-3-quinuclidinyl benzilate binding and exhibited a rank order of potency almost identical to that obtained in the inositol studies with Lev greater than Dex much much greater than DTG much greater than PCP MK-801. In addition, the IC50 values obtained from both studies were very similar. It is concluded that PCP, PCP-like compounds and sigma agonists block carbachol-induced inositol-phosphate accumulation by blockade of muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Brain; Carbachol; Culture Techniques; Dibenzocycloheptenes; Dioxolanes; Dizocilpine Maleate; Inositol Phosphates; Male; Phenazocine; Phencyclidine; Piperidines; Rats; Rats, Inbred Strains; Receptors, Muscarinic; Sigma Factor; Transcription Factors

1990
Comparison of the effects of the acute administration of dexoxadrol, levoxadrol, MK-801 and phencyclidine on body temperature in the rat.
    Neuropharmacology, 1989, Volume: 28, Issue:8

    Some of the dioxolanes produce pharmacological effects that have much in common with phencyclidine and phencyclidine-like drugs. Dioxadrol can be resolved into two enantiomers, dexoxadrol and levoxadrol. Dexoxadrol has an affinity for phencyclidine receptors that is much greater than that of levoxadrol, but dexoxadrol and levoxadrol have nearly equal affinities for sigma receptors. The systematic analysis of the relative potencies of dexoxadrol and levoxadrol can be used as an approach to define effects mediated by phencyclidine vs sigma receptors. Compounds that act on phencyclidine receptors, as well as affecting behavior, alter body temperature in the rat. The purpose of the present study was to compare and contrast the effects of the acute administration of dexoxadrol, levoxadrol, MK-801 and phencyclidine on body temperature in the rat. Dexoxadrol and levoxadrol (5.0, 10.0, 20.0 or 40.0 mg/kg), MK-801 (0.12, 0.6 or 1.2 mg/kg) or phencyclidine (5.0, 10.0 or 20.0 mg/kg) were administered subcutaneously and body temperature was measured. Both dexoxadrol and MK-801 produced hyperthermia but levoxadrol did not affect body temperature. In contrast to the hyperthermic effects of dexoxadrol and MK-801, phencyclidine produced hypothermia. These findings indicate that hypothermia induced by phencyclidine is not due to interactions with phencyclidine receptors and, while dexoxadrol, MK-801 and phencyclidine may share some similar receptor binding and behavioral characteristics, they can be differentiated on the basis of their effects on body temperature.

    Topics: Animals; Body Temperature; Dibenzocycloheptenes; Dioxolanes; Dioxoles; Dizocilpine Maleate; Injections, Subcutaneous; Male; Phencyclidine; Piperidines; Rats; Rats, Inbred Strains; Time Factors

1989