dizocilpine-maleate and furazlocillin

dizocilpine-maleate has been researched along with furazlocillin* in 1 studies

Other Studies

1 other study(ies) available for dizocilpine-maleate and furazlocillin

ArticleYear
Effect of beta-estradiol on voltage-gated Ca(2+) channels in rat hippocampal neurons: a comparison with dehydroepiandrosterone.
    European journal of pharmacology, 2001, Mar-30, Volume: 416, Issue:3

    We investigated the effects of beta-estradiol, dehydroepiandrosterone and dehydroepiandrosterone sulfate on intracellular calcium concentration ([Ca(2+)](i)) increases induced by gamma-aminobutyric acid (GABA), high K(+) and N-methyl-D-aspartate acid (NMDA) in cultured hippocampal neurons. Acute treatment with beta-estradiol, dehydroepiandrosterone and dehydroepiandrosterone sulfate inhibited the GABA-induced [Ca(2+)](i) increases to the similar extent. Tamoxifen, an estrogen receptor antagonist, did not block the inhibitory effects of beta-estradiol. On the other hand, GABA type A (GABA(A)) receptor antagonists, picrotoxin and bicuculline, blocked the GABA-induced [Ca(2+)](i) increases. Previously, we demonstrated that GABA- and high K(+)-induced [Ca(2+)](i) increases were commonly mediated by voltage-gated calcium channels (VGCCs). Therefore, we examined the effects of these steroids on the high K(+)-induced [Ca(2+)](i) increases. The inhibitory effect of beta-estradiol on the high K(+)-induced [Ca(2+)](i) increases was much greater than that of dehydroepiandrosterone and dehydroepiandrosterone sulfate. beta-Estradiol inhibited the NMDA-induced [Ca(2+)](i) increases with an IC(50) of 51.8 microM and NMDA responses were reduced to half in the presence of 10 micro M nifedipine, indicating that the NMDA-induced [Ca(2+)](i) increases also involved VGCCs. Further, we examined the inhibitory effect of beta-estradiol on the high K(+)-induced [Ca(2+)](i) increases in the presence of a N-type VGCCs antagonist, 1 microM omega-conotoxin, or a L-type VGCCs antagonist, 10 microM nifedipine. The IC(50) value of beta-estradiol alone (45.5 microM) was similar to that of omega-conotoxin (33.1 microM), while the value combined with nifedipine was reduced to 2.2 microM. beta-Estradiol also abolished the positive modulatory effect of L-type VGCCs agonist, 1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]pyridine-3-carboxylic acid methyl ester (Bay K 8644). Our results showed that the inhibitory mechanism of beta-estradiol is different from that of dehydroepiandrosterone and dehydroepiandrosterone sulfate and beta-estradiol may act primarily at L-type VGCCs.

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Androstenedione; Animals; Azlocillin; Calcium; Calcium Channel Blockers; Calcium Channels; Cells, Cultured; Corticosterone; Dehydroepiandrosterone; Dehydroepiandrosterone Sulfate; Dizocilpine Maleate; Estradiol; Estrogen Antagonists; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Hippocampus; Imidazolidines; N-Methylaspartate; Neurons; Nifedipine; Rats; Rats, Wistar; Tamoxifen

2001