dizocilpine-maleate has been researched along with flupirtine* in 2 studies
2 other study(ies) available for dizocilpine-maleate and flupirtine
Article | Year |
---|---|
Immunohistochemical evidence for flupirtine acting as an antagonist on the N-methyl-D-aspartate and homocysteic acid-induced release of GABA in the rabbit retina.
When rabbit retinas are exposed in vitro to specific excitatory amino acid receptor agonists certain GABAergic amacrine cells are activated to cause a release of GABA. The GABA that is not released can be detected by immunohistochemistry. Exposure of tissues to kainate or NMDA each caused a characteristic change in the GABA immunoreactivity. CNQX antagonised the kainate effect specifically while MK-801 counteracted the influence of NMDA. The effect produced by kainate was mimicked by domoic acid while the influence of homocysteic acid was identical with NMDA. Flupirtine alone did not influence the nature of the GABA immunoreactivity and so did not act as a kainate or NMDA agonist. However, flupirtine counteracted the influence produced by NMDA and homocysteic acid but had no effect on the kainate and domoic acid responses. Thus in this system flupirtine acts as an NMDA antagonist. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aminopyridines; Animals; Dizocilpine Maleate; gamma-Aminobutyric Acid; Homocysteine; Immunohistochemistry; Kainic Acid; Rabbits; Receptors, N-Methyl-D-Aspartate; Retina | 1994 |
Mechanisms of action of new antiepileptic drugs.
Our understanding of how new antiepileptic drugs work mirrors what we know about how currently marketed antiepileptic compounds exert their action--that information is scarce and elusive. The mechanism of action of antiepileptic drugs is nevertheless inextricably linked to epileptogenesis itself, and investigations of several promising new compounds are underway to establish the levels at which these drugs act. Compounds act on synapses and membranes as well as affecting receptors, neurotransmitters, and peptides. The most extensive data are available on drugs that inhibit the action of GABA or its receptors, including new benzodiazepine-like agents and barbituric-acid derivatives. The few drugs that act by inhibiting the effects of excitatory amino acids are reviewed. Finally, the maximal electroshock test is an empirical method to determine the antiepileptic properties of a drug; several agents under development have been effective in this screening technique. Topics: Acetamides; Acetates; Amines; Aminocaproates; Aminopyridines; Anti-Anxiety Agents; Anticonvulsants; Aspartic Acid; Benzodiazepines; Benzodiazepinones; Clobazam; Cyclohexanecarboxylic Acids; Dibenzocycloheptenes; Dizocilpine Maleate; Epilepsy; Felbamate; Flumazenil; GABA Antagonists; Gabapentin; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Imidazoles; Lamotrigine; Phenylcarbamates; Propylene Glycols; Receptors, GABA-A; Triazines; Vigabatrin | 1989 |