dizocilpine-maleate has been researched along with brevetoxin* in 2 studies
2 other study(ies) available for dizocilpine-maleate and brevetoxin
Article | Year |
---|---|
Characterization of brevetoxin (PbTx-3) exposure in neurons of the anoxia-tolerant freshwater turtle (Trachemys scripta).
Harmful algal blooms are increasing in frequency and extent worldwide and occur nearly annually off the west coast of Florida where they affect both humans and wildlife. The dinoflagellate Karenia brevis is a key organism in Florida red tides that produces a suite of potent neurotoxins collectively referred to as the brevetoxins (PbTx). Brevetoxins bind to and open voltage gated sodium channels (VGSC), increasing cell permeability in excitable cells and depolarizing nerve and muscle tissue. Exposed animals may thus show muscular and neurological symptoms including head bobbing, muscle twitching, paralysis, and coma; large HABs can result in significant morbidity and mortality of marine life, including fish, birds, marine mammals, and sea turtles. Brevetoxicosis however is difficult to treat in endangered sea turtles as the physiological impacts have not been investigated and the magnitude and duration of brevetoxin exposure are generally unknown. In this study we used the freshwater turtle Trachemys scripta as a model organism to investigate the effects of the specific brevetoxin PbTx-3 in the turtle brain. Primary turtle neuronal cell cultures were exposed to a range of PbTx-3 concentrations to determine excitotoxicity. Agonists and antagonists of voltage-gated sodium channels and downstream targets were utilized to confirm the toxin's mode of action. We found that turtle neurons are highly resistant to PbTx-3; while cell viability decreased in a dose dependent manner across PbTx-3 concentrations of 100-2000nM, the EC Topics: Animals; Calcium; Cell Survival; Cells, Cultured; Dizocilpine Maleate; Exocytosis; Female; Florida; Harmful Algal Bloom; Humans; Hypoxia; Marine Toxins; Neurons; Oxocins; Receptors, N-Methyl-D-Aspartate; Signal Transduction; Tetrodotoxin; Turtles; Voltage-Gated Sodium Channels; Water Pollutants | 2016 |
Brevetoxin-induced autocrine excitotoxicity is associated with manifold routes of Ca2+ influx.
Real-time alterations in intracellular Ca2+ ([Ca2+]i) were monitored in fluo-3-loaded cerebellar granule neurons (CGNs) exposed to the brevetoxin PbTx-1. [Ca2+]i was measured using a fluorescent plate reader (FLIPR), which measures simultaneously the mean intracellular Ca2+ change in a population of cultured cells in each well of a 96-well plate. PbTx-1 produced rapid and concentration-dependent increases in neuronal [Ca2+]i with a potency nearly identical to that determined previously for PbTx-1-induced neurotoxicity. The NMDA receptor antagonists MK-801, dextrorphan, and D(-)-2-amino-5-phosphonopentanoic acid, and tetanus toxin, an inhibitor of Ca2+-dependent exocytotic neurotransmitter release, effected significant reductions in both the integrated fluo-3 fluorescence response and excitatory amino acid release and protected CGNs against PbTx-1 neurotoxicity. The L-type Ca2+ channel antagonist nifedipine produced a modest reduction in the fluo-3 response but reduced substantially the plateau phase of the PbTx-1 increment in [Ca2+]i when combined with MK-801. When nifedipine and MK-801 were combined with the Na+/Ca2+ exchanger (reversed mode) inhibitor KB-R7943, the PbTx-1 increment in [Ca2+]i was nearly completely attenuated. These data show that Ca2+ entry into PbTx-1-exposed CGNs occurs through three primary routes: NMDA receptor ion channels, L-type Ca2+ channels, and reversal of the Na+/Ca2+ exchanger. There was a close correlation between reduction of the integrated fluo-3 fluorescence response and the level of neuroprotection afforded by blockers of each Ca2+ entry pathway; however, simultaneous blockade of L-type Ca2+ channels and the Na+/Ca2+ exchanger, although reducing the integrated [Ca2+]i response to a level below that provided by NMDA receptor blockade alone, failed to completely attenuate PbTx-1 neurotoxicity. This finding suggests that in addition to total [Ca2+]i load, neuronal vulnerability is governed principally by the NMDA receptor Ca2+ influx pathway. Topics: 2-Amino-5-phosphonovalerate; Aniline Compounds; Animals; Autocrine Communication; Biological Transport; Calcium; Calcium Channel Blockers; Calcium Channels, L-Type; Cells, Cultured; Cerebellum; Dextrorphan; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fluorescent Dyes; Glutamic Acid; Marine Toxins; Neurons; Neurotoxins; Nifedipine; Oxocins; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sodium Channels; Thiourea; Xanthenes | 2000 |