dizocilpine-maleate has been researched along with bicuculline-methiodide* in 8 studies
8 other study(ies) available for dizocilpine-maleate and bicuculline-methiodide
Article | Year |
---|---|
Blockage of NMDA- and GABA(A) Receptors Improves Working Memory Selectivity of Primate Prefrontal Neurons.
The ongoing activity of prefrontal neurons after a stimulus has disappeared is considered a neuronal correlate of working memory. It depends on the delicate but poorly understood interplay between excitatory glutamatergic and inhibitory GABAergic receptor effects. We administered the NMDA receptor antagonist MK-801 and the GABA(A) receptor antagonist bicuculline methiodide while recording cellular activity in PFC of male rhesus monkeys performing a delayed decision task requiring working memory. The blockade of GABA(A) receptors strongly improved the selectivity of the neurons' delay activity, causing an increase in signal-to-noise ratio during working memory periods as well as an enhancement of the neurons' coding selectivity. The blockade of NMDA receptors resulted in a slight enhancement of selectivity and encoding capacity of the neurons. Our findings emphasize the delicate and more complex than expected interplay of excitatory and inhibitory transmitter systems in modulating working memory coding in prefrontal circuits. Topics: Action Potentials; Animals; Bicuculline; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; GABA-A Receptor Antagonists; GABAergic Neurons; Glutamic Acid; Macaca mulatta; Male; Memory, Short-Term; Mental Recall; Neurons; Pattern Recognition, Visual; Photic Stimulation; Prefrontal Cortex; Psychomotor Performance; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate | 2020 |
Activity-dependent differences in function between proximal and distal Schaffer collaterals.
Axon conduction fidelity is important for signal transmission and has been studied in various axons, including the Schaffer collateral axons of the hippocampus. Previously, we reported that high-frequency stimulation (HFS) depresses Schaffer collateral excitability when assessed by whole-cell recordings from CA3 pyramidal cells but induces biphasic excitability changes (increase followed by decrease) in extracellular recordings of CA1 fiber volleys. Here, we examined responses from proximal (whole-cell or field-potential recordings from CA3 pyramidal cell somata) and distal (field-potential recordings from CA1 stratum radiatum) portions of the Schaffer collaterals during HFS and burst stimulation in hippocampal slices. Whole-cell and dual-field-potential recordings using 10-100-Hz HFS revealed frequency-dependent changes like those previously described, with higher frequencies producing more drastic changes. Dual-field-potential recordings revealed substantial differences in the response to HFS between proximal and distal regions of the Schaffer collaterals, with proximal axons depressing more strongly and only distal axons showing an initial excitability increase. Because CA3 pyramidal neurons normally fire in short bursts rather than long high-frequency trains, we repeated the dual recordings using 100-1,000-ms interval burst stimulation. Burst stimulation produced changes similar to those during HFS, with shorter intervals causing more drastic changes and substantial differences observed between proximal and distal axons. We suggest that functional differences between proximal and distal Schaffer collaterals may allow selective filtering of nonphysiological activity while maximizing successful conduction of physiological activity throughout an extensive axonal arbor. Topics: Action Potentials; Animals; Bicuculline; Biophysical Phenomena; Dizocilpine Maleate; Electric Stimulation; Excitatory Amino Acid Antagonists; Female; GABA-A Receptor Antagonists; Hippocampus; In Vitro Techniques; Nerve Fibers; Nerve Net; Neurons; Patch-Clamp Techniques; Phosphinic Acids; Propanolamines; Quinoxalines; Rats; Rats, Sprague-Dawley; Reaction Time | 2015 |
Glutamate/GABA balance in ACC modulates the nociceptive responses of vocalization: an expression of affective-motivational component of pain in guinea pigs.
Evidence corroborates the role of the anterior cingulate cortex (ACC) in the modulation of cognitive and emotional functions. Its involvement in the motivational-affective component of pain has been widely investigated using different methods to elucidate the specific role of different neurotransmitter systems. We used the peripheral noxious stimulus-induced vocalization algesimetric test to verify glutamatergic and GABAergic neurotransmission in the guinea pig ACC. Microinjection of homocysteic acid (DLH; 30 nmol) in the left guinea pig ACC increased the amplitude of vocalizations (pronociception) compared to controls injected with saline. Moreover, microinjection of MK-801 (3.6 nmol), an NMDA receptor antagonist, did not alter the amplitude of vocalizations, but its microinjection prior to DLH prevented the increase in vocalizations induced by this drug. Regarding the GABAergic system, blockade of GABAA receptors with bicuculline (1 nmol) increased the amplitude of vocalizations, while three different doses of the GABAA agonist muscimol (0.5, 1 and 2 nmol) did not influence nociceptive vocalization responses. Finally, a combination of MK-801 (3.6 nmol) and muscimol (1 nmol) reduced the amplitude of vocalizations (antinociception), suggesting that a combination of glutamate and GABA in the ACC modulates the expression of affective-motivational pain response. We suggest that activation of NMDA receptors or blockade of GABAergic neurotransmission promotes pronociception and that the antinociceptive effect of muscimol depends on the blockade of NMDA receptors. Topics: Animals; Bicuculline; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Agents; GABA Agents; gamma-Aminobutyric Acid; Glutamic Acid; Guinea Pigs; Gyrus Cinguli; Homocysteine; Male; Microinjections; Muscimol; Pain; Time Factors; Vocalization, Animal | 2014 |
Inhibitory control of the urinary bladder in the neonatal rat in vitro spinal cord-bladder preparation.
Urinary bladder activity of the neonatal rat is tonically inhibited by neural input from the spinal cord passing through axons in the pelvic nerve. The present study was undertaken to examine the organization of this inhibitory mechanism using in vitro spinal cord-bladder preparations of neonatal rats in which the lumbosacral dorsal roots (DRs) or ventral roots (VRs) were transected. Isovolumetric bladder contractions occurring spontaneously or induced by electrical stimulation of the bladder wall (ES-BW) were measured. In DR transected (DRT) preparations, removal of the spinal cord significantly enhanced (50-59%) the amplitude of spontaneous and ES-BW-evoked bladder contractions; whereas in VR transected (VRT) preparations removal of the spinal cord produced only a small enhancement (6.7-12%). However, in VRT preparations, electrical stimulation of the dorsal roots reduced the amplitude of spontaneous contractions, an effect blocked by a nicotinic ganglionic blocking agent, hexamethonium. In DRT preparations, MK-801 enhanced the amplitude of spontaneous and ES-BW-evoked contractions. These results demonstrate that bladder activity of the neonatal rat is tonically inhibited by input from the lumbosacral spinal cord via parasympathetic pathways in the pelvic nerve. The inhibitory outflow is not dependent upon afferent input to the cord but is facilitated by NMDA glutamatergic transmission in the spinal cord. Antidromic activation of afferent axons also appears to induce inhibition in the bladder via a mechanism involving nicotinic cholinergic receptors. These findings suggest that spinal and peripheral inhibitory mechanisms may play an important role in controlling voiding in the neonatal rat. Topics: Animals; Animals, Newborn; Autonomic Denervation; Bicuculline; Dizocilpine Maleate; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; In Vitro Techniques; Neural Inhibition; Neurons, Afferent; Parasympathetic Nervous System; Rats; Rats, Sprague-Dawley; Spinal Cord; Spinal Nerve Roots; Urinary Bladder | 2002 |
NMDA-Receptor-dependent synaptic activation of voltage-dependent calcium channels in basolateral amygdala.
Afferent stimulation of pyramidal cells in the basolateral amygdala produced mixed excitatory postsynaptic potentials (EPSPs) mediated by N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors during whole cell current-clamp recordings. In the presence of GABA(A) receptor blockade, the mixed EPSPs recruited a large "all-or-none" depolarizing event. This recruited event was voltage dependent and had a distinct activation threshold. An analogous phenomenon elicited by exogenous glutamate in the presence of tetrodotoxin (TTX) was blocked by Cd(2+), suggesting that the event was a Ca(2+) spike. Selective glutamatergic blockade revealed that these Ca(2+) spikes were recruited readily by single afferent stimulus pulses that elicited NMDA EPSPs. In contrast, non-NMDA EPSPs induced by single stimuli failed to elicit the Ca(2+) spike even at maximal stimulus intensities although these non-NMDA EPSPs depolarized the soma more effectively than mixed EPSPs. Elongation of non-NMDA EPSPs by cyclothiazide or brief trains of stimulation were also unable to elicit the Ca(2+) spike. Blockade of K(+) channels with intracellular Cs(+) enabled single non-NMDA EPSPs to activate the Ca(2+) spike. The finding that voltage-dependent calcium channels are activated preferentially by NMDA-receptor-mediated EPSPs provides a mechanism for NMDA-receptor-dependent plasticity independent of Ca(2+) influx through the NMDA receptor. Topics: 2-Amino-5-phosphonovalerate; Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amygdala; Animals; Bicuculline; Calcium; Calcium Channels; Cesium; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Male; N-Methylaspartate; Patch-Clamp Techniques; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synapses; Tetrodotoxin | 2000 |
N-methyl-D-aspartate enhancement of phasic responses in primate neocortex.
In area 17 of the awake macaque, disinhibition by blockade of GABA(A) receptors results in a marked elevation in neuronal excitability, with a particular focus in the supragranular laminae. We examined the possibility that the excitatory supragranular response is N-methyl-D-aspartate (NMDA)-mediated. Laminar activity profiles consisting of flash-evoked field potential, current source density (CSD) and multiunit activity (MUA) measures were obtained during striate cortex penetrations using multicontact electrodes that incorporated single or double microinjection cannulae. Profiles were recorded before and at successive time points after bicuculline induction of disinhibition. Both the noncompetitive NMDA antagonist MK-801 and the competitive antagonist APV reversed bicuculline effects, producing a normal laminar activity profile. NMDA-mediated enhancement of excitatory responses in the supragranular laminae of neocortex is believed to play a role in normal signal processing, as well as in epileptic manifestations. Topics: Animals; Bicuculline; Dizocilpine Maleate; Evoked Potentials, Visual; Macaca fascicularis; Male; Microinjections; N-Methylaspartate; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate; Time Factors; Visual Cortex | 1997 |
Excitatory amino acid receptor antagonists block the cardiovascular and anxiety responses elicited by gamma-aminobutyric acidA receptor blockade in the basolateral amygdala of rats.
Blockade of gamma-aminobutyric acid (GABAA) receptors in the anterior basolateral amygdala (BLA) with bicuculline methiodide results in an increase in heart rate, blood pressure and "anxiety" in rats. Glutamate receptors in the BLA are also reported to be involved in eliciting anxiety responses. The purpose of this study was to investigate the interaction between GABAergic inhibition and glutamatergic excitation in the BLA. Male Wistar rts were implanted with femoral arterial catheters and bilateral chronic microinjection cannulae into the BLA. Each animal was injected with either artificial cerebrospinal fluid (100 nl), bicuculline methiodide (10 pmol/100 nl) or bicuculline methiodide + one dose of an antagonist of either the N-methyl-D-aspartate receptor [AP5 (20 and 100 pmol) and dizocilpine (25 and 125 pmol)] or the non-N-methyl-D-aspartate ionotropic receptor [CNQX (10 and 50 pmol) and GYKI 52466 (50 and 250 pmol)]. Increases in heart rate, blood pressure and "anxiety" (as measured in the social interaction test) observed in rats after bicuculline methiodide injections into the BLA were blocked in a dose dependent manner with the concurrent injections of either N-methyl-D-aspartate or non-N-methyl-D-aspartate antagonists, suggesting that activation of both subtypes of glutamate ionotropic receptors may be necessary for the responses elicited by GABAA receptor blockade in the basolateral amygdala. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Animals; Anti-Anxiety Agents; Anxiety; Benzodiazepines; Bicuculline; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; GABA-A Receptor Antagonists; Hemodynamics; Male; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate | 1997 |
The involvement of excitatory amino acids in neocortical epileptogenesis: NMDA and non-NMDA receptors.
Conventional intracellular recording techniques were used to investigate the N-methyl-D-aspartate (NMDA) and non-NMDA mediated synaptic mechanisms underlying the stimulus-induced paroxysmal depolarization shift (PDS) generated by cells in rat neocortical slices treated with bicuculline methiodide (BMI). The NMDA receptor antagonists CPP or MK-801 were ineffective in abolishing the PDS. However, both drugs were able to attenuate the late phase of the PDS and delay its time of onset. In contrast, the non-NMDA receptor blocker CNQX demonstrated potent anticonvulsant property by reducing the PDS into a depolarizing potential that was graded in nature. This CNQX-resistant depolarizing potential was readily blocked by CPP. Voltage-response analysis of the PDS indicated that the entire response (including its NMDA-mediated phase) displayed conventional voltage characteristics reminiscent of an excitatory postsynaptic potential that is mediated by non-NMDA receptors. We conclude that the activation of non-NMDA receptors is necessary and sufficient to induce epileptiform activity in the neocortex when the GABAergic inhibitory mechanism is compromised. The NMDA receptors contribute to the process of PDS amplification by prolonging the duration and reducing the latency of each epileptiform discharge. However, the participation of NMDA receptors is not essential for BMI-induced epileptogenesis, and their partial involvement in the PDS is dependent upon the integrity of the non-NMDA mediated input. The lack of NMDA-like voltage dependency observed in the PDS's late phase might reflect an uneven distribution of NMDA receptors along the cell and/or an association of this excitatory amino acid receptor subtype in the polysynaptic pathways within the neocortex. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Bicuculline; Cerebral Cortex; Dizocilpine Maleate; Electric Stimulation; Epilepsy; In Vitro Techniques; Male; Membrane Potentials; N-Methylaspartate; Neurons; Piperazines; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Receptors, N-Methyl-D-Aspartate | 1991 |