dizocilpine-maleate and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde

dizocilpine-maleate has been researched along with benzyloxycarbonylleucyl-leucyl-leucine-aldehyde* in 2 studies

Other Studies

2 other study(ies) available for dizocilpine-maleate and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde

ArticleYear
Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory.
    Learning & memory (Cold Spring Harbor, N.Y.), 2014, Volume: 21, Issue:9

    The ubiquitin-proteasome system (UPS) of protein degradation has been evaluated in different forms of neural plasticity and memory. The role of UPS in such processes is controversial. Several results support the idea that the activation of this system in memory consolidation is necessary to overcome negative constrains for plasticity. In this case, the inhibition of the UPS during consolidation impairs memory. Similar results were reported for memory reconsolidation. However, in other cases, the inhibition of UPS had no effect on memory consolidation and reconsolidation but impedes the amnesic action of protein synthesis inhibition after retrieval. The last finding suggests a specific action of the UPS inhibitor on memory labilization. However, another interpretation is possible in terms of the synthesis/degradation balance of positive and negative elements in neural plasticity, as was found in the case of long-term potentiation. To evaluate these alternative interpretations, other reconsolidation-interfering drugs than translation inhibitors should be tested. Here we analyzed initially the UPS inhibitor effect in contextual conditioning in crabs. We found that UPS inhibition during consolidation impaired long-term memory. In contrast, UPS inhibition did not affect memory reconsolidation after contextual retrieval but, in fact, impeded memory labilization, blocking the action of drugs that does not affect directly the protein synthesis. To extend these finding to vertebrates, we performed similar experiments in contextual fear memory in mice. We found that the UPS inhibitor in hippocampus affected memory consolidation and blocked memory labilization after retrieval. These findings exclude alternative interpretations to the requirement of UPS in memory labilization and give evidence of this mechanism in both vertebrates and invertebrates.

    Topics: Animals; Bicuculline; Brachyura; Calcineurin Inhibitors; Conditioning, Classical; Dizocilpine Maleate; Hippocampus; Leupeptins; Male; Memory, Long-Term; Mice; Mice, Inbred BALB C; NF-kappa B; Proteasome Endopeptidase Complex; Sulfasalazine; Tacrolimus; Ubiquitin

2014
Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion.
    Molecular psychiatry, 2013, Volume: 18, Issue:5

    Perturbation of Disrupted-In-Schizophrenia-1 (DISC1) and D-serine/NMDA receptor hypofunction have both been implicated in the pathophysiology of schizophrenia and other psychiatric disorders. In the present study, we demonstrate that these two pathways intersect with behavioral consequences. DISC1 binds to and stabilizes serine racemase (SR), the enzyme that generates D-serine, an endogenous co-agonist of the NMDA receptor. Mutant DISC1 fails to bind to SR, facilitating ubiquitination and degradation of SR and a decrease in D-serine production. To elucidate DISC1-SR interactions in vivo, we generated a mouse model of selective and inducible expression of mutant DISC1 in astrocytes, the main source of D-serine in the brain. Expression of mutant DISC1 downregulates endogenous DISC1 and decreases protein but not mRNA levels of SR, resulting in diminished production of D-serine. In contrast, mutant DISC1 does not alter levels of ALDH1L1, connexins, GLT-1 or binding partners of DISC1 and SR, LIS1 or PICK1. Adult male and female mice with lifelong expression of mutant DISC1 exhibit behavioral abnormalities consistent with hypofunction of NMDA neurotransmission. Specifically, mutant mice display greater responses to an NMDA antagonist, MK-801, in open field and pre-pulse inhibition of the acoustic startle tests and are significantly more sensitive to the ameliorative effects of D-serine. These findings support a model wherein mutant DISC1 leads to SR degradation via dominant negative effects, resulting in D-serine deficiency that diminishes NMDA neurotransmission thus linking DISC1 and NMDA pathophysiological mechanisms in mental illness.

    Topics: Acoustic Stimulation; Amphetamine; Analysis of Variance; Animals; Astrocytes; Brain; Cell Line, Transformed; Cycloheximide; Cysteine Proteinase Inhibitors; Disease Models, Animal; Dizocilpine Maleate; Dopamine Agents; Dose-Response Relationship, Drug; Exploratory Behavior; Female; Glial Fibrillary Acidic Protein; Humans; Inhibition, Psychological; Leupeptins; Male; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mutation; Nerve Tissue Proteins; Neuroprotective Agents; Protein Binding; Racemases and Epimerases; Reflex, Startle; Schizophrenia; Serine; Transfection

2013