dizocilpine-maleate and 4-iodoamphetamine

dizocilpine-maleate has been researched along with 4-iodoamphetamine* in 2 studies

Other Studies

2 other study(ies) available for dizocilpine-maleate and 4-iodoamphetamine

ArticleYear
De-coupling of blood flow and metabolism in the rat brain induced by glutamate.
    Annals of nuclear medicine, 2009, Volume: 23, Issue:3

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an NMDA receptor antagonist, and NBQX, an AMPA-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined.. The rats were microinjected with glutamate (1 micromol/microl, 2 microl) or ibotenic acid (10 microg/microl, 1 microl) into the right striatum, and dual-tracer autoradiograms of [(18)F]FDG and [(14)C]IMP were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate.. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [(18)F]FDG uptake and significant decrease of [(14)C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [(18)F]FDG uptake and decrease of [(14)C]IMP uptake were also seen in the rat brain infused with ibotenic acid.. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism.

    Topics: Amphetamines; Animals; Autoradiography; Brain; Carbon Radioisotopes; Cerebrovascular Circulation; Dizocilpine Maleate; Fluorodeoxyglucose F18; Glucose; Glutamic Acid; Male; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate

2009
SR146131, a cholecystokinin-A receptor agonist, antagonizes prepulse inhibition deficits produced by dizocilpine and DOI.
    Psychopharmacology, 2002, Volume: 164, Issue:3

    Converging evidence has demonstrated that cholecystokinin (CCK) inhibits mesolimbic brain dopamine (DA) function via activation of CCK-A (CCK-1) receptors. These effects of CCK have stimulated interest in the potential use of CCK agonists as antipsychotic drugs. Most research on the antipsychotic-like drug effects of CCK has used CCK or CCK analogues that nonselectively activate both CCK-A and CCK-B (CCK-2) receptors, which may produce opposite effects. SR146131, a CCK-A selective nonpeptide agonist, has recently been developed (Sanofi-Synthelabo).. To determine whether SR146131 exhibits antipsychotic-like qualities in the prepulse inhibition (PPI) paradigm.. We performed experiments to determine whether SR146131 (vehicle, 0.01, 0.1, 1.0 mg/kg) would attenuate PPI deficits induced by amphetamine (2.0 mg/kg), an indirect dopamine agonist, and dizocilpine (0.1 mg/kg), a noncompetitive N-methyl-D-aspartate (NMDA) antagonist. Since SR146131 demonstrated significant effects on PPI disrupted by the noncompetitive NMDA antagonist, an effect associated with drugs that inhibit serotonin (5HT)2A transmission, we also tested the effects of SR146131 on PPI disruption produced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 0.5 mg/kg), a direct 5HT2A agonist.. SR146131 did not significantly affect startle magnitude, baseline PPI, or amphetamine-induced PPI deficits. However, it dose-dependently antagonized dizocilpine and DOI-induced PPI deficits.. The lack of an effect of SR146131 on amphetamine-induced disruption of PPI suggests that a selective nonpeptide CCK-A agonist may not produce antipsychotic-like effects on dopamine transmission. However, the unexpected effects of SR146131 on dizocilpine and DOI-induced PPI deficits are consistent with the effects of drugs that inhibit transmission in the 5HT2A receptor system, including atypical antipsychotic drugs. Possible mechanisms underlying these findings are discussed.

    Topics: Amphetamine; Amphetamines; Animals; Behavior, Animal; Central Nervous System Stimulants; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Indoles; Inhibition, Psychological; Male; Rats; Rats, Sprague-Dawley; Receptors, Cholecystokinin; Reflex, Startle; Thiazoles

2002