dizocilpine-maleate has been researched along with 4-aminopyrrolidine-2-4-dicarboxylic-acid* in 2 studies
2 other study(ies) available for dizocilpine-maleate and 4-aminopyrrolidine-2-4-dicarboxylic-acid
Article | Year |
---|---|
Intrathecal injection of glutamate receptor antagonists/agonist selectively attenuated rat pain-related behaviors induced by the venom of scorpion Buthus martensi Karsch.
The present study investigated the involvement of spinal glutamate receptors in the induction and maintenance of the pain-related behaviors induced by the venom of scorpion Buthus martensi Karsch (BmK). (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5-10-imine hydrogen maleate (MK-801; 40nmol; a non-competitive NMDA receptor antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 40nmol; a non-NMDA receptor antagonist), dl-amino-3-phosphonopropionic acid (dl-AP3; 100nmol; a group I metabotropic glutamate receptor antagonist) and 4-aminopyrrolidine-2,4-dicarboxylate (APDC; 100nmol; a group II metabotropic glutamate receptor agonist) were employed. On intrathecal injection of glutamate receptor antagonists/agonist before BmK venom administration by 10min, BmK venom-induced spontaneous nociceptive responses could be suppressed by all tested agents. Primary thermal hyperalgesia could be inhibited by MK-801 and dl-AP3, while bilateral mechanical hyperalgesia could be inhibited by CNQX and dl-AP3 and contralateral mechanical hyperalgesia could be inhibited by APDC. On intrathecal injection of glutamate receptor antagonists/agonist after BmK venom injection by 4.5h, primary thermal hyperalgesia could be partially reversed by all tested agents, while bilateral mechanical hyperalgesia could only be inhibited by APDC. The results suggest that the role of spinal glutamate receptors may be different on the various manifestations of BmK venom-induced pain-related behaviors. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; Animals; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Injections, Spinal; Male; Pain; Proline; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Scorpion Venoms | 2007 |
Metabotropic glutamate receptor regulation of neuronal cell death.
The metabotropic glutamate receptors (mGluRs) are a family of glutamate-sensitive receptors that regulate neuronal function separately from the ionotropic glutamate receptors. By coupling to guanosine nucleotide-binding proteins (G proteins), mGluRs are able to regulate neuronal injury and survival, likely through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrial regulated programmed cell death (PCD). The physiological relevance of this system is supported by evidence that mGluRs are associated with cell survival in several central nervous system neurodegenerative diseases. Evidence is presented that mGluRs are also able to prevent PCD in the peripheral nervous system, and that this may provide a novel mechanism for treatment of diabetic neuropathy. In dorsal root ganglion (DRG) neurons, a high glucose load increases generation of reactive oxygen species (ROS), destabilizes the inner mitochondrial membrane potential (Deltapsi(M)), induces cytochrome c release from the mitochondrial intermembrane space, and induces downstream activation of caspases. In high-glucose conditions, the group II metabotropic glutamate agonist N-acetylaspartylglutamate (NAAG) blocks caspase activation and is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). Furthermore, the direct mGluR3 agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) prevents induction of ROS. Together these findings are consistent with an emerging concept that mGluRs may protect against cellular injury by regulating oxidative stress in the neuron. More complete understanding of the complex PCD regulatory pathways mediated by mGluRs will provide new therapeutic approaches for the treatment of a wide variety of neurodegenerative diseases. Topics: Animals; Bacterial Proteins; Caspase 3; Caspases; Cell Death; Cells, Cultured; Dipeptides; Dizocilpine Maleate; DNA-Binding Proteins; Drug Interactions; Embryo, Mammalian; Ganglia, Spinal; Glucose; Glutamates; In Situ Nick-End Labeling; Indicators and Reagents; Kainic Acid; Neurons; Oxidative Stress; Proline; Rats; Receptors, Metabotropic Glutamate; Repressor Proteins; Schwann Cells; Time Factors | 2003 |