disulfiram has been researched along with celecoxib in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 8 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Halatsch, ME; Karpel-Massler, G; Kast, RE | 1 |
Huang, H; Liu, Y; Ren, J; Zheng, X; Zou, Q | 1 |
Grieg, Z; Langmoen, IA; Sandberg, CJ; Skaga, E; Skaga, IØ; Vik-Mo, EO | 1 |
1 review(s) available for disulfiram and celecoxib
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
7 other study(ies) available for disulfiram and celecoxib
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Aprepitant; Artemisinins; Artesunate; Auranofin; Brain Neoplasms; Captopril; Celecoxib; Dacarbazine; Disulfiram; Glioblastoma; Humans; Itraconazole; Molecular Targeted Therapy; Morpholines; Neoplasm Recurrence, Local; Pyrazoles; Ritonavir; Sertraline; Signal Transduction; Sulfonamides; Temozolomide; Treatment Outcome | 2014 |
An Atomic Force Microscope Study Revealed Two Mechanisms in the Effect of Anticancer Drugs on Rate-Dependent Young's Modulus of Human Prostate Cancer Cells.
Topics: Amino Acids; Celecoxib; Cell Line, Tumor; Cytoskeleton; Disulfiram; Elastic Modulus; Fluorescent Antibody Technique; Heterocyclic Compounds, 3-Ring; Humans; Male; Microscopy, Atomic Force; Models, Theoretical; Paclitaxel; Prostatic Neoplasms | 2015 |
The efficacy of a coordinated pharmacological blockade in glioblastoma stem cells with nine repurposed drugs using the CUSP9 strategy.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Aprepitant; Auranofin; Brain Neoplasms; Captopril; Celecoxib; Disulfiram; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Female; Glioblastoma; Humans; Itraconazole; Mice; Mice, SCID; Minocycline; Neoplastic Stem Cells; Quetiapine Fumarate; Reproducibility of Results; Sertraline; Signal Transduction; Temozolomide; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2019 |