disopyramide has been researched along with tetracaine in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (16.67) | 18.2507 |
2000's | 3 (50.00) | 29.6817 |
2010's | 2 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Gao, F; Lombardo, F; Shalaeva, MY; Tupper, KA | 1 |
Johans, C; Kinnunen, PK; Söderlund, T; Suomalainen, P | 1 |
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Iseki, K; Kobayashi, M; Miyazaki, K; Oikawa, H; Sugawara, M | 1 |
6 other study(ies) available for disopyramide and tetracaine
Article | Year |
---|---|
ElogD(oct): a tool for lipophilicity determination in drug discovery. 2. Basic and neutral compounds.
Topics: 1-Octanol; Chromatography, High Pressure Liquid; Pharmaceutical Preparations; Solubility; Water | 2001 |
Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability.
Topics: Blood-Brain Barrier; Lipid Bilayers; Micelles; Permeability; Pharmaceutical Preparations; Structure-Activity Relationship; Surface Properties | 2004 |
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
Effect of membrane surface potential on the uptake and the inhibition of cationic compounds in rat intestinal brush-border membrane vesicles and liposomes.
Topics: Animals; Cations; Diffusion; Disopyramide; Electrochemistry; Hydrogen-Ion Concentration; Imipramine; In Vitro Techniques; Intestinal Absorption; Liposomes; Membrane Potentials; Microvilli; Osmolar Concentration; Potassium; Rats; Tetracaine; Tryptamines | 1995 |