dipyridamole has been researched along with candesartan in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (30.00) | 29.6817 |
2010's | 4 (40.00) | 24.3611 |
2020's | 3 (30.00) | 2.80 |
Authors | Studies |
---|---|
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Hallevi, H; Hazan-Halevy, I; Paran, E | 1 |
Figueroa, H; González, I; Rojas, A | 1 |
Hallevi, H; Hazan-Hallevi, I; Paran, E | 1 |
Ma, C; Wang, J | 1 |
Huang, YY; Li, Z; Lin, Y; Liu, R; Luo, HB; Wang, X; Zhan, CG | 1 |
1 review(s) available for dipyridamole and candesartan
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
9 other study(ies) available for dipyridamole and candesartan
Article | Year |
---|---|
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
Modification of neutrophil adhesion to human endothelial cell line in acute ischemic stroke by dipyridamole and candesartan.
Topics: Adult; Aged; Angiotensin II Type 1 Receptor Blockers; Benzimidazoles; Biphenyl Compounds; Cell Adhesion; Cell Adhesion Molecules; Cell Line, Transformed; Dipyridamole; Endothelial Cells; Female; Humans; Male; Middle Aged; Neutrophils; Platelet Aggregation Inhibitors; Statistics, Nonparametric; Stroke; Tetrazoles | 2007 |
Re: Modification of neutrophil adhesion to human endothelial cell line in acute ischemic stroke by dipyridamole and candesartan.
Topics: Benzimidazoles; Biphenyl Compounds; Brain Ischemia; Cell Adhesion; Cell Line, Transformed; Dipyridamole; Endothelial Cells; Humans; Neutrophils; Stroke; Tetrazoles | 2008 |
The ECV-304 cell-line: should it be used?
Topics: Benzimidazoles; Biphenyl Compounds; Brain Ischemia; Cell Adhesion; Cell Line; Dipyridamole; Endothelial Cells; Humans; Neutrophils; Stroke; Tetrazoles | 2008 |
Dipyridamole, chloroquine, montelukast sodium, candesartan, oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors.
Topics: Acetates; Atazanavir Sulfate; Benzimidazoles; Biphenyl Compounds; Chloroquine; COVID-19 Drug Treatment; Cyclopropanes; Dipyridamole; Humans; Oxytetracycline; Pharmaceutical Preparations; Protease Inhibitors; Quinolines; SARS-CoV-2; Sulfides; Tetrazoles | 2021 |
Reply to Ma and Wang: Reliability of various in vitro activity assays on SARS-CoV-2 main protease inhibitors.
Topics: Acetates; Atazanavir Sulfate; Benzimidazoles; Biphenyl Compounds; Chloroquine; COVID-19 Drug Treatment; Cyclopropanes; Dipyridamole; Humans; Oxytetracycline; Protease Inhibitors; Quinolines; Reproducibility of Results; SARS-CoV-2; Sulfides; Tetrazoles | 2021 |