diphenyleneiodonium and s-nitro-n-acetylpenicillamine

diphenyleneiodonium has been researched along with s-nitro-n-acetylpenicillamine in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (100.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Fandrey, J; Genius, J1
Csiszar, A; Kaminski, PM; Koller, A; Ungvari, Z; Wolin, MS1
Foster, E; Kahn, AM; Yang, M1

Other Studies

3 other study(ies) available for diphenyleneiodonium and s-nitro-n-acetylpenicillamine

ArticleYear
Nitric oxide affects the production of reactive oxygen species in hepatoma cells: implications for the process of oxygen sensing.
    Free radical biology & medicine, 2000, Sep-15, Volume: 29, Issue:6

    Topics: Acridines; Anaerobiosis; Carcinoma, Hepatocellular; DNA-Binding Proteins; Erythropoietin; Gene Expression Regulation, Neoplastic; Genes, Reporter; Humans; Hydrogen Peroxide; Hypoxia-Inducible Factor 1; Hypoxia-Inducible Factor 1, alpha Subunit; NADH, NADPH Oxidoreductases; NADPH Oxidases; Nitric Oxide; Nitric Oxide Donors; Nitrogen Oxides; Nuclear Proteins; Onium Compounds; Oxygen; Penicillamine; Reactive Oxygen Species; RNA, Messenger; Signal Transduction; Spermine; Transcription Factors; Transcriptional Activation; Transfection; Tumor Cells, Cultured

2000
Chronic high pressure-induced arterial oxidative stress: involvement of protein kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system.
    The American journal of pathology, 2004, Volume: 165, Issue:1

    Topics: Acetophenones; Acetylcholine; Alkaloids; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Arteries; Benzophenanthridines; Captopril; Enzyme Inhibitors; Hypertension; Male; Models, Biological; NADPH Oxidases; Nitric Oxide Donors; Nitric Oxide Synthase; Onium Compounds; Organ Culture Techniques; Oxidative Stress; Penicillamine; Phenanthridines; Protein Kinase C; Rats; Rats, Wistar; Renin-Angiotensin System; Staurosporine; Superoxide Dismutase; Vasoconstrictor Agents; Vasodilator Agents

2004
Insulin-stimulated NAD(P)H oxidase activity increases migration of cultured vascular smooth muscle cells.
    American journal of hypertension, 2005, Volume: 18, Issue:10

    Topics: Aminoquinolines; Angiotensin II; Animals; Cell Movement; Cells, Cultured; Cyclic GMP; Enzyme Inhibitors; Glycoproteins; Guanylate Cyclase; Insulin; Male; Muscle, Smooth, Vascular; NADPH Oxidases; Nitric Oxide Donors; Onium Compounds; Penicillamine; Rats; Rats, Sprague-Dawley; Superoxides; Vasoconstrictor Agents

2005