diosmetin and kaempferol

diosmetin has been researched along with kaempferol* in 1 studies

Other Studies

1 other study(ies) available for diosmetin and kaempferol

ArticleYear
Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells.
    European journal of medicinal chemistry, 2016, May-23, Volume: 114

    The protective effects of kaempferol against reactive oxygen species (ROS)-induced hemolysis and its antiproliferative activity on human cancer cells were evaluated in this study. Kaempferol exhibited strong cellular antioxidant ability (CAA) with a CAA value of 59.80 ± 0.379 μM of quercetin (QE)/100 μM (EC50 = 7.74 ± 0.049 μM). Pretreatment with kaempferol significantly attenuated the ROS-induced hemolysis of human erythrocyte (87.4% hemolysis suppressed at 100 μg/mL) and reduced the accumulation of toxic lipid peroxidation product malondialdehyde (MDA). The anti-hemolytic activity of kaempferol was mainly through scavenging excessive ROS and preserving the intrinsic antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) activities in normal levels. Additionally, kaempferol showed significant antiproliferative activity on a panel of human cancer cell lines including human breast carcinoma (MCF-7) cells, human stomach carcinoma (SGC-7901) cells, human cervical carcinoma (Hela) cells and human lung carcinoma (A549) cells. Kaemperol induced apoptosis of MCF-7 cells accompanied with nuclear condensation and mitochondria dysfunction.

    Topics: Antioxidants; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Erythrocytes; HeLa Cells; Hemolysis; Humans; Kaempferols; MCF-7 Cells; Molecular Structure; Neoplasms; Protective Agents; Reactive Oxygen Species; Structure-Activity Relationship

2016