dioleoyl-phosphatidylethanolamine has been researched along with dioleoylphosphatidic-acid* in 2 studies
2 other study(ies) available for dioleoyl-phosphatidylethanolamine and dioleoylphosphatidic-acid
Article | Year |
---|---|
Phospholipid reorientation at the lipid/water interface measured by high resolution 31P field cycling NMR spectroscopy.
The magnetic field dependence of the 31P spin-lattice relaxation rate, R1, of phospholipids can be used to differentiate motions for these molecules in a variety of unilamellar vesicles. In particular, internal motion with a 5- to 10-ns correlation time has been attributed to diffusion-in-a-cone of the phosphodiester region, analogous to motion of a cylinder in a liquid hydrocarbon. We use the temperature dependence of 31P R1 at low field (0.03-0.08 T), which reflects this correlation time, to explore the energy barriers associated with this motion. Most phospholipids exhibit a similar energy barrier of 13.2 +/- 1.9 kJ/mol at temperatures above that associated with their gel-to-liquid-crystalline transition (Tm); at temperatures below Tm, this barrier increases dramatically to 68.5 +/- 7.3 kJ/mol. This temperature dependence is broadly interpreted as arising from diffusive motion of the lipid axis in a spatially rough potential energy landscape. The inclusion of cholesterol in these vesicles has only moderate effects for phospholipids at temperatures above their Tm, but significantly reduces the energy barrier (to 17 +/- 4 kJ/mol) at temperatures below the Tm of the pure lipid. Very-low-field R1 data indicate that cholesterol inclusion alters the averaged disposition of the phosphorus-to-glycerol-proton vector (both its average length and its average angle with respect to the membrane normal) that determines the 31P relaxation. Topics: 1,2-Dipalmitoylphosphatidylcholine; Animals; Cattle; Cholesterol; Dimyristoylphosphatidylcholine; Motion; Nuclear Magnetic Resonance, Biomolecular; Phosphatidic Acids; Phosphatidylcholines; Phosphatidylethanolamines; Phospholipids; Phosphorus Isotopes; Sphingomyelins; Temperature; Unilamellar Liposomes; Water | 2009 |
What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?
Phosphatidic acid and lysophosphatidic acid are minor but important anionic bioactive lipids involved in a number of key cellular processes, yet these molecules have a simple phosphate headgroup. To find out what is so special about these lipids, we determined the ionization behavior of phosphatidic acid (PA) and lysophosphatidic acid (LPA) in extended (flat) mixed lipid bilayers using magic angle spinning 31P NMR. Our data show two surprising results. First, despite identical phosphomonoester headgroups, LPA carries more negative charge than PA when present in a phosphatidylcholine bilayer. Dehydroxy-LPA [1-oleoyl-3-(phosphoryl)propanediol] behaves in a manner identical to that of PA, indicating that the difference in negative charge between LPA and PA is caused by the hydroxyl on the glycerol backbone of LPA and its interaction with the phosphomonoester headgroup. Second, deprotonation of phosphatidic acid and lysophosphatidic acid was found to be strongly stimulated by the inclusion of phosphatidylethanolamine in the bilayer, indicating that lipid headgroup charge depends on local lipid composition and will vary between the different subcellular locations of (L)PA. Our findings can be understood in terms of a hydrogen bond formed within the phosphomonoester headgroup of (L)PA and its destabilization by competing intra- or intermolecular hydrogen bonds. We propose that this hydrogen bonding property of (L)PA is involved in the various cellular functions of these lipids. Topics: Cell Membrane; Endoplasmic Reticulum; Hydrogen Bonding; Hydrogen-Ion Concentration; Intracellular Membranes; Ions; Least-Squares Analysis; Lipid Bilayers; Lysophospholipids; Magnetic Resonance Spectroscopy; Membranes, Artificial; Models, Molecular; Molecular Structure; Phosphatidic Acids; Phosphatidylcholines; Phosphatidylethanolamines; Protons; Titrimetry | 2005 |