dioleoyl-phosphatidylethanolamine and 6-carboxyfluorescein

dioleoyl-phosphatidylethanolamine has been researched along with 6-carboxyfluorescein* in 3 studies

Other Studies

3 other study(ies) available for dioleoyl-phosphatidylethanolamine and 6-carboxyfluorescein

ArticleYear
Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2018, Volume: 133

    This study investigates the impact of the chemical nature of lipids and additive on the formulation and properties of pH sensitive liposomes. The objective is to understand the respective role of the formulation parameters on the liposome properties in order to optimize the conditions for efficient encapsulation of doxorubicin (DOX). These liposomes should be stable at physiological pH, and disrupt in slightly acidic media such as the tumor microenvironment to release their DOX load. The major challenge for encapsulating DOX in pH sensitive liposomes lies in the fact that this drug is soluble at low pH (when the pH-sensitive liposomes are not stable), but the DOX aqueous solubility decreases in the pH conditions corresponding to the stability of the pH-sensitive liposomes. The study of pH-sensitivity of liposomes was conducted using carboxyfluorescein (CF) encapsulated in high concentration, i.e. quenched, and following the dye dequenching as sensor of the liposome integrity. We studied the impact of (i) the chemical nature of lipids (dioleoyl phosphatidyl ethanolamine (DOPE), palmitoyl-oleoyl phosphatidyl ethanolamine (POPE) and dimyristoyl phosphatidyl ethanolamine (DMPE)) and (ii) the lipid/stabilizing agent ratio (alpha-tocopheryl succinate), on the pH sensitivity of the liposomes. Optimized liposome formulations were then selected for the encapsulation of DOX by an active loading procedure, i.e. driven by a difference in pH inside and outside the liposomes. Numerous experimental conditions were explored, in function of the pH gradient and liposome composition, which allowed identifying critical parameters for the efficient DOX encapsulation in pH-sensitive liposomes.

    Topics: alpha-Tocopherol; Chemistry, Pharmaceutical; Doxorubicin; Fluoresceins; Hydrogen-Ion Concentration; Lipids; Liposomes; Phosphatidylethanolamines; Solubility; Tumor Microenvironment

2018
Assessment of dually labelled PEGylated liposomes transplacental passage and placental penetration using a combination of two ex-vivo human models: the dually perfused placenta and the suspended villous explants.
    International journal of pharmaceutics, 2017, Nov-05, Volume: 532, Issue:2

    Uptake and passage of nanocarriers through the placenta are critical information to develop new therapeutic approaches during pregnancy. In order to assess nanocarriers transplacental passage and penetration into the placenta, we studied and optimized two ex-vivo human models: the dually perfused placenta and the placenta explants. Doubly labelled PEGylated liposomes were used as models to provide data on the penetration and transplacental passage of drugs and liposomes. A HPLC method was set-up to quantify both carboxyfluorescein and lipid-rhodamine. Transplacental passage was then quantified using HPLC and placental penetration was assessed using spinning disk microscopy. We found a similar transplacental passage rate for both free and encapsulated carboxyfluorescein as well as a homogeneous fluorescence intensity in the outer cell layer of the placental villous, the syncytiotrophoblast, and the mesenchyma. Besides, liposome-rhodamine was not detected in the fetal circulation. The absence of transplacental passage of PEGylated liposomes is also supported by their detection in the sole syncytiotrophoblast. The combination of two ex-vivo models and the monitoring of both the drug and the carrier provided consistent and complementary information. Overall, we suggest combining the perfused human placenta and the human explants villous models to evaluate nanocarriers designed for treatments during pregnancy.

    Topics: Drug Liberation; Female; Fluoresceins; Fluorescent Dyes; Humans; Liposomes; Maternal-Fetal Exchange; Perfusion; Phosphatidylethanolamines; Placenta; Polyethylene Glycols; Pregnancy; Rhodamines

2017
A novel assay for detecting fusion pore formation: implications for the fusion mechanism.
    Biochemistry, 2013, Nov-26, Volume: 52, Issue:47

    Membrane fusion is broadly envisioned as a two- or three-step process proceeding from contacting bilayers through one or two semistable, nonlamellar lipidic intermediate structures to a fusion pore. A true fusion event requires mixing of contents between compartments and is monitored by the movement of soluble molecules between trapped compartments. We have used poly(ethylene glycol) (PEG) to rapidly generate an ensemble aggregated state A that proceeds sequentially through intermediates (I₁ and/or I₂) to a final fusion pore state (FP) with rate constants k₁, k₂, and k₃. Movement of moderately sized solutes (e.g., Tb³⁺/dipicolinic acid) has been used to detect pores assigned to intermediate states as well as to the final state (FP). Analysis of ensemble kinetic data has required that mixing of contents occurs with defined probabilities (αi) in each ensemble state, although it is unclear whether pores that form in different states are different. We introduce here a simple new assay that employs fluorescence resonance energy transfer (FRET) between a 6-carboxyfluorescein (donor) and tetramethylrhodamine (acceptor), which are covalently attached to complementary sequences of 10 bp oligonucleotides. Complementary sequences of fluorophore-labeled oligonucleotides were incorporated in vesicles separately, and the level of FRET increased in a simple exponential fashion during PEG-mediated fusion. The resulting rate constant corresponded closely to the slow rate constant of FP formation (k₃) derived from small molecule assays. Additionally, the total extent of oligonucleotide mixing corresponded to the fraction of content mixing that occurred in state FP in the small molecule assay. The results show that both large "final pores" and small (presumably transient) pores can form between vesicles throughout the fusion process. The implications of this result for the mechanism of membrane fusion are discussed.

    Topics: Cell Membrane Structures; Fluoresceins; Fluorescence Resonance Energy Transfer; Fluorescent Dyes; Indicators and Reagents; Kinetics; Membrane Fusion; Oligonucleotides; Phosphatidylcholines; Phosphatidylethanolamines; Picolinic Acids; Polyethylene Glycols; Porosity; Rhodamines; Solubility; Sphingomyelins; Surface Properties; Terbium

2013