dinoprostone has been researched along with estrone-sulfate* in 5 studies
5 other study(ies) available for dinoprostone and estrone-sulfate
Article | Year |
---|---|
Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood-brain barrier.
The "reduced in osteosclerosis" transporter (Roct), which shows decreased expression in the osteosclerosis (oc) mutant mouse, has high homology with rat and human organic anion transporter 3 (OAT3). However, its transport properties and involvement in bone turnover are poorly understood. Here, we examined Roct-mediated transport using a Xenopus laevis oocyte expression system. Roct-expressing oocytes exhibited uptake of [(3)H]estrone sulfate, [(3)H]p-aminohippuric acid, [(3)H]benzylpenicillin, [(3)H]estradiol 17beta-glucronide, [(3)H]indoxyl sulfate, [(14)C]indomethacin, [(3)H]homovanillic acid, [(3)H]cimetidine, [(14)C]glutarate, [(14)C]salicylic acid, and [(3)H]methotrexate. Furthermore, the uptake of [(3)H]benzylpenicillin by Roct coexpressed with Na(+)-dicarboxylate cotransporter was trans-stimulated by glutarate preloading, and [(3)H]estrone sulfate uptake showed a similar tendency, suggesting that Roct is a dicarboxylate exchanger. [(3)H]Benzylpenicillin uptake by Roct was inhibited by OAT3 substrates and inhibitors, and by sulfate or glucuronide conjugates, and compounds involved in bone turnover. Roct mRNA is expressed abundantly in the kidney and was also detected in the brain, choroid plexus, and eye. Immunohistochemical analysis revealed that Roct is localized in brain capillary endothelial cells. These results indicate that the transport properties and tissue distribution of Roct are similar to those of OAT3, suggesting that Roct functions as mouse OAT3. Because Roct is expressed in the kidney and at the blood-brain barrier, it may play a role in the excretion of substrates such as conjugates and bone turnover factors. Topics: Animals; Biological Transport; Blood-Brain Barrier; Capillaries; Disease Models, Animal; Estrone; Male; Membrane Transport Proteins; Mice; Mice, Inbred C57BL; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Osteosclerosis; Penicillin G; RNA, Messenger | 2004 |
Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta.
These studies identify an organic solute transporter (OST) that is generated when two novel gene products are co-expressed, namely human OSTalpha and OSTbeta or mouse OSTalpha and OSTbeta. The results also demonstrate that the mammalian proteins are functionally complemented by evolutionarily divergent Ostalpha-Ostbeta proteins recently identified in the little skate, Raja erinacea, even though the latter exhibit only 25-41% predicted amino acid identity with the mammalian proteins. Human, mouse, and skate OSTalpha proteins are predicted to contain seven transmembrane helices, whereas the OSTbeta sequences are predicted to have a single transmembrane helix. Human OSTalpha-OSTbeta and mouse Ostalpha-Ostbeta cDNAs were cloned from liver mRNA, sequenced, expressed in Xenopus laevis oocytes, and tested for their ability to functionally complement the corresponding skate proteins by measuring transport of [3H]estrone 3-sulfate. None of the proteins elicited a transport signal when expressed individually in oocytes; however, all nine OSTalpha-OSTbeta combinations (i.e. OSTalpha-OSTbeta pairs from human, mouse, or skate) generated robust estrone 3-sulfate transport activity. Transport was sodium-independent, saturable, and inhibited by other steroids and anionic drugs. Human and mouse OSTalpha-OSTbeta also were able to mediate transport of taurocholate, digoxin, and prostaglandin E2 but not of estradiol 17beta-d-glucuronide or p-aminohippurate. OSTalpha and OSTbeta were able to reach the oocyte plasma membrane when expressed either individually or in pairs, indicating that co-expression is not required for proper membrane targeting. Interestingly, OSTalpha and OSTbeta mRNAs were highly expressed and widely distributed in human tissues, with the highest levels occurring in the testis, colon, liver, small intestine, kidney, ovary, and adrenal gland. Topics: Amino Acid Sequence; Animals; Biological Transport; Cell Membrane; Cloning, Molecular; Digoxin; Dinoprostone; DNA, Complementary; Dose-Response Relationship, Drug; Epitopes; Estrone; Humans; Kinetics; Liver; Membrane Transport Proteins; Mice; Microscopy, Fluorescence; Molecular Sequence Data; Reverse Transcriptase Polymerase Chain Reaction; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Skates, Fish; Sodium; Steroids; Substrate Specificity; Taurocholic Acid; Tissue Distribution; Xenopus laevis | 2003 |
Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter.
Transport of various amphipathic organic compounds is mediated by organic anion transporting polypeptides (OATPs in humans, Oatps in rodents), which belong to the solute carrier family 21A (SLC21A/Slc21a). Several of these transporters exhibit a broad and overlapping substrate specificity and are expressed in a variety of different tissues. We have isolated and functionally characterized OATP-F (SLC21A14), a novel member of the OATP family. The cDNA (3059 bp) contains an open reading frame of 2136 bp encoding a protein of 712 amino acids. Its gene containing 15 exons is located on chromosome 12p12. OATP-F exhibits 47-48% amino acid identity with OATP-A, OATP-C, and OATP8, the genes of which are clustered on chromosome 12p12. OATP-F is predominantly expressed in multiple brain regions and Leydig cells of the testis. OATP-F mediates high affinity transport of T(4) and reverse T(3) with apparent K(m) values of approximately 90 nM and 128 nM, respectively. Substrates less well transported by OATP-F include T(3), bromosulfophthalein, estrone-3-sulfate, and estradiol-17beta-glucuronide. Furthermore, OATP-F-mediated T(4) uptake could be cis-inhibited by L-T(4) and D-T(4), but not by 3,5-diiodothyronine, indicating that T(4) transport is not stereospecific, but that 3',5'-iodination is important for efficient transport by OATP-F. Thus, in contrast to most other family members, OATP-F has a more selective substrate preference and may play an important role in the disposition of thyroid hormones in brain and testis. Topics: Amino Acid Sequence; Animals; Brain; CHO Cells; Chromosomes, Human, Pair 12; Cloning, Molecular; Cricetinae; Diiodothyronines; Estradiol; Estrone; Female; Humans; Leydig Cells; Male; Membrane Proteins; Molecular Sequence Data; Oocytes; Organ Specificity; Organic Anion Transporters; Sequence Homology, Amino Acid; Sulfobromophthalein; Testis; Thyroxine; Triiodothyronine; Xenopus | 2002 |
Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver.
Hepatic uptake of cholephilic organic compounds is mediated by members of the organic anion-transporting polypeptide (OATP) family. We aimed to characterize the novel OATP-B with respect to tissue distribution and hepatocellular localization and to compare its substrate specificity with those of OATP-A, OATP-C, and OATP8.. Tissue distribution and hepatocellular localization of OATP-B were analyzed by Northern blotting and immunofluorescence, respectively. Transport of 16 substrates was measured for each individual human OATP in complementary RNA-injected Xenopus laevis oocytes.. Expression of OATP-B was most abundant in human liver, where it is localized at the basolateral membrane of hepatocytes. OATP-B, OATP-C, and OATP8 mediated high-affinity uptake of bromosulphophthalein (K(m), approximately 0.7, 0.3, and 0.4 micromol/L, respectively). OATP-B also transported estrone-3-sulfate but not bile salts. Although OATP-A, OATP-C, and OATP8 exhibit broad overlapping substrate specificities, OATP8 was unique in transporting digoxin and exhibited especially high transport activities for the anionic cyclic peptides [D-penicillamine(2,5)]enkephalin (DPDPE; opioid-receptor agonist) and BQ-123 (endothelin-receptor antagonist).. OATP-B is the third bromosulphophthalein uptake system localized at the basolateral membrane of human hepatocytes. OATP-B, OATP-C, and OATP8 account for the major part of sodium-independent bile salt, organic anion, and drug clearance of human liver. Topics: Animals; Anion Transport Proteins; Anions; Antibodies; Arylsulfatases; Biological Transport; Blotting, Northern; Carrier Proteins; Coloring Agents; DNA, Complementary; Estrone; Gene Expression; Humans; Liver; Molecular Weight; Oocytes; Rabbits; RNA, Messenger; Steryl-Sulfatase; Sulfobromophthalein; Xenopus laevis | 2001 |
Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family.
We identified three novel transporters structurally belonging to the organic anion transporting polypeptide (OATP) family in humans. Since previously known rat oatp1 to 3 do not necessarily correspond to the human OATPs in terms of either tissue distribution or function, here we designate the newly identified human OATPs as OATP-B, -D and -E, and we rename the previously known human OATP as OATP-A. OATP-C proved to be identical with the recently reported LST1/OATP-2. Expression profiles of the five OATPs and the prostaglandin transporter PGT (a member of OATP family) in human tissues showed that OATP-C is exclusively localized in liver, OATP-A and PGT are expressed in restricted ranges of tissues, and OATP-B, -D and -E show broad expression profiles. OATP-B, -C, -D and -E exhibited transport activity for [(3)H]estrone-3-sulfate as a common substrate. OATP-C has a high transport activity with broad substrate specificity. Topics: Amino Acid Sequence; Anion Transport Proteins; Antiporters; Biological Transport; Carrier Proteins; Cell Line; Cloning, Molecular; Dinoprostone; DNA-Binding Proteins; Estradiol; Estrone; Gene Expression Profiling; Humans; Molecular Sequence Data; Multigene Family; Organ Specificity; Organic Anion Transporters; Penicillin G; Phylogeny; Physical Chromosome Mapping; Polymorphism, Single Nucleotide; RNA, Messenger; Sequence Alignment; Substrate Specificity; Transfection | 2000 |