dinoprostone has been researched along with estradiol-17-beta-glucuronide* in 2 studies
2 other study(ies) available for dinoprostone and estradiol-17-beta-glucuronide
Article | Year |
---|---|
Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter.
Transport of various amphipathic organic compounds is mediated by organic anion transporting polypeptides (OATPs in humans, Oatps in rodents), which belong to the solute carrier family 21A (SLC21A/Slc21a). Several of these transporters exhibit a broad and overlapping substrate specificity and are expressed in a variety of different tissues. We have isolated and functionally characterized OATP-F (SLC21A14), a novel member of the OATP family. The cDNA (3059 bp) contains an open reading frame of 2136 bp encoding a protein of 712 amino acids. Its gene containing 15 exons is located on chromosome 12p12. OATP-F exhibits 47-48% amino acid identity with OATP-A, OATP-C, and OATP8, the genes of which are clustered on chromosome 12p12. OATP-F is predominantly expressed in multiple brain regions and Leydig cells of the testis. OATP-F mediates high affinity transport of T(4) and reverse T(3) with apparent K(m) values of approximately 90 nM and 128 nM, respectively. Substrates less well transported by OATP-F include T(3), bromosulfophthalein, estrone-3-sulfate, and estradiol-17beta-glucuronide. Furthermore, OATP-F-mediated T(4) uptake could be cis-inhibited by L-T(4) and D-T(4), but not by 3,5-diiodothyronine, indicating that T(4) transport is not stereospecific, but that 3',5'-iodination is important for efficient transport by OATP-F. Thus, in contrast to most other family members, OATP-F has a more selective substrate preference and may play an important role in the disposition of thyroid hormones in brain and testis. Topics: Amino Acid Sequence; Animals; Brain; CHO Cells; Chromosomes, Human, Pair 12; Cloning, Molecular; Cricetinae; Diiodothyronines; Estradiol; Estrone; Female; Humans; Leydig Cells; Male; Membrane Proteins; Molecular Sequence Data; Oocytes; Organ Specificity; Organic Anion Transporters; Sequence Homology, Amino Acid; Sulfobromophthalein; Testis; Thyroxine; Triiodothyronine; Xenopus | 2002 |
Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family.
We identified three novel transporters structurally belonging to the organic anion transporting polypeptide (OATP) family in humans. Since previously known rat oatp1 to 3 do not necessarily correspond to the human OATPs in terms of either tissue distribution or function, here we designate the newly identified human OATPs as OATP-B, -D and -E, and we rename the previously known human OATP as OATP-A. OATP-C proved to be identical with the recently reported LST1/OATP-2. Expression profiles of the five OATPs and the prostaglandin transporter PGT (a member of OATP family) in human tissues showed that OATP-C is exclusively localized in liver, OATP-A and PGT are expressed in restricted ranges of tissues, and OATP-B, -D and -E show broad expression profiles. OATP-B, -C, -D and -E exhibited transport activity for [(3)H]estrone-3-sulfate as a common substrate. OATP-C has a high transport activity with broad substrate specificity. Topics: Amino Acid Sequence; Anion Transport Proteins; Antiporters; Biological Transport; Carrier Proteins; Cell Line; Cloning, Molecular; Dinoprostone; DNA-Binding Proteins; Estradiol; Estrone; Gene Expression Profiling; Humans; Molecular Sequence Data; Multigene Family; Organ Specificity; Organic Anion Transporters; Penicillin G; Phylogeny; Physical Chromosome Mapping; Polymorphism, Single Nucleotide; RNA, Messenger; Sequence Alignment; Substrate Specificity; Transfection | 2000 |