dinoprost has been researched along with phthalic-acid* in 2 studies
2 other study(ies) available for dinoprost and phthalic-acid
Article | Year |
---|---|
Latent classes for chemical mixtures analyses in epidemiology: an example using phthalate and phenol exposure biomarkers in pregnant women.
Latent class analysis (LCA), although minimally applied to the statistical analysis of mixtures, may serve as a useful tool for identifying individuals with shared real-life profiles of chemical exposures. Knowledge of these groupings and their risk of adverse outcomes has the potential to inform targeted public health prevention strategies. This example applies LCA to identify clusters of pregnant women from a case-control study within the LIFECODES birth cohort with shared exposure patterns across a panel of urinary phthalate metabolites and parabens, and to evaluate the association between cluster membership and urinary oxidative stress biomarkers. LCA identified individuals with: "low exposure," "low phthalates, high parabens," "high phthalates, low parabens," and "high exposure." Class membership was associated with several demographic characteristics. Compared with "low exposure," women classified as having "high exposure" had elevated urinary concentrations of the oxidative stress biomarkers 8-hydroxydeoxyguanosine (19% higher, 95% confidence interval [CI] = 7, 32%) and 8-isoprostane (31% higher, 95% CI = -5, 64%). However, contrast examinations indicated that associations between oxidative stress biomarkers and "high exposure" were not statistically different from those with "high phthalates, low parabens" suggesting a minimal effect of higher paraben exposure in the presence of high phthalates. The presented example offers verification of latent class assignments through application to an additional data set as well as a comparison to another unsupervised clustering approach, k-means clustering. LCA may be more easily implemented, more consistent, and more able to provide interpretable output. Topics: Adult; Biomarkers; Case-Control Studies; Dinoprost; Environmental Pollutants; Female; Humans; Maternal Exposure; Oxidative Stress; Parabens; Phenol; Phenols; Phthalic Acids; Pregnancy; Young Adult | 2020 |
Prenatal phthalate exposure and 8-isoprostane among Mexican-American children with high prevalence of obesity.
Oxidative stress has been linked to many obesity-related conditions among children including cardiovascular disease, diabetes mellitus and hypertension. Exposure to environmental chemicals such as phthalates, ubiquitously found in humans, may also generate reactive oxygen species and subsequent oxidative stress. We examined longitudinal changes of 8-isoprostane urinary concentrations, a validated biomarker of oxidative stress, and associations with maternal prenatal urinary concentrations of phthalate metabolites for 258 children at 5, 9 and 14 years of age participating in a birth cohort residing in an agricultural area in California. Phthalates are endocrine disruptors, and in utero exposure has been also linked to altered lipid metabolism, as well as adverse birth and neurodevelopmental outcomes. We found that median creatinine-corrected 8-isoprostane concentrations remained constant across all age groups and did not differ by sex. Total cholesterol, systolic and diastolic blood pressure were positively associated with 8-isoprostane in 14-year-old children. No associations were observed between 8-isoprostane and body mass index (BMI), BMI Z-score or waist circumference at any age. Concentrations of three metabolites of high molecular weight phthalates measured at 13 weeks of gestation (monobenzyl, monocarboxyoctyl and monocarboxynonyl phthalates) were negatively associated with 8-isoprostane concentrations among 9-year olds. However, at 14 years of age, isoprostane concentrations were positively associated with two other metabolites (mono(2-ethylhexyl) and mono(2-ethyl-5-carboxypentyl) phthalates) measured in early pregnancy. Longitudinal data on 8-isoprostane in this pediatric population with a high prevalence of obesity provides new insight on certain potential cardiometabolic risks of prenatal exposure to phthalates. Topics: Adolescent; Adult; Child; Child, Preschool; Dinoprost; Female; Humans; Longitudinal Studies; Male; Maternal Exposure; Mexican Americans; Obesity; Phthalic Acids; Pregnancy; Prenatal Exposure Delayed Effects; Prevalence; United States; Vasoconstrictor Agents | 2017 |