dinoprost and mastoparan

dinoprost has been researched along with mastoparan* in 3 studies

Other Studies

3 other study(ies) available for dinoprost and mastoparan

ArticleYear
Arachidonic acid release and prostaglandin F(2alpha) formation induced by anandamide and capsaicin in PC12 cells.
    European journal of pharmacology, 2002, Aug-23, Volume: 450, Issue:2

    Anandamide, an endogenous agonist of cannabinoid receptors, activates various signal transduction pathways. Anandamide also activates vanilloid VR(1) receptor, which was a nonselective cation channel with high Ca(2+) permeability and had sensitivity to capsaicin, a pungent principle in hot pepper. The effects of anandamide and capsaicin on arachidonic acid metabolism in neuronal cells have not been well established. We examined the effects of anandamide and capsaicin on arachidonic acid release in rat pheochromocytoma PC12 cells. Both agents stimulated [3H]arachidonic acid release in a concentration-dependent manner from the prelabeled PC12 cells even in the absence of extracellular CaCl(2). The effect of anandamide was neither mimicked by an agonist nor inhibited by an antagonist for cannabinoid receptors. The effects of anandamide and capsaicin were inhibited by phospholipase A(2) inhibitors, but not by an antagonist for vanilloid VR(1) receptor. In PC12 cells preincubated with anandamide or capsaicin, [3H]arachidonic acid release was marked and both agents were no more effective. Co-addition of anandamide or capsaicin synergistically enhanced [3H]arachidonic acid release by mastoparan in the absence of CaCl(2). Anandamide stimulated prostaglandin F(2alpha) formation. These findings suggest that anandamide and capsaicin stimulated arachidonic acid metabolism in cannabinoid receptors- and vanilloid VR(1) receptor-independent manner in PC12 cells. The possible mechanisms are also discussed.

    Topics: Animals; Arachidonic Acid; Arachidonic Acids; Calcium Chloride; Capsaicin; Dinoprost; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Activators; Extracellular Space; Intercellular Signaling Peptides and Proteins; Ionomycin; Ionophores; PC12 Cells; Peptides; Phospholipases A; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; Wasp Venoms

2002
A direct inhibitory action of prostaglandins upon ACTH secretion at the late stages of the secretory pathway of AtT-20 cells.
    British journal of pharmacology, 2002, Volume: 135, Issue:8

    1. The mouse AtT-20/D16-16 anterior pituitary tumour cell line was used as a model system for the study of the effects of prostaglandins upon the late stages of the adrenocorticotrophin (ACTH) secretory pathway. 2. Calcium (1 nM - 100 microM), guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S) (1 - 100 microM) and mastoparan (1 and 10 microM) all stimulated ACTH secretion from permeabilized AtT-20 cells in a concentration-dependent manner. GTP-gamma-S and mastoparan stimulated ACTH secretion from permeabilized cells in the absence of calcium. Co-incubation with prostaglandins E(1) and E(2) (PGE(1), PGE(2)) (10 microM) but not prostaglandin F(2 alpha) (PGF(2 alpha)) (10 microM) significantly inhibited calcium-, GTP-gamma-S and mastoparan-evoked secretion by 30 - 50%. 3. The effects of PGE(1) and PGE(2) upon GTP-gamma-S (100 microM)-, calcium (10 microM)- and mastoparan (10 microM)-evoked secretion were concentration-dependent. PGE(1) significantly inhibited GTP-gamma-S- and calcium-evoked secretion at concentrations of PGE(1) above 1 microM but mastoparan-evoked secretion only at the highest concentration of PGE(1) investigated (10 microM). PGE(2) was much more potent than PGE(1) and significantly inhibited GTP-gamma-S- and calcium-evoked secretion at 10 nM and above and mastoparan-evoked secretion above 1 microM. 4. The inhibitory effects of PGE(1) and PGE(2) upon calcium-, GTP-gamma-S- and mastoparan-stimulated ACTH secretion from permeabilized cells were pertussis toxin (PTX) sensitive. 5. In intact cells PGE(1), PGE(2) and PGF(2 alpha) (1 nM - 10 microM) acting singly had little or no effect upon ACTH secretion. However, only PGE(2) (1 nM - 10 microM) significantly inhibited corticotrophin-releasing factor-41 (CRF-41) (100 nM)-evoked secretion in a concentration dependent manner. 6. The present study finds that prostaglandins of the E series exert an inhibitory action, via a pertussis toxin-sensitive GTP-binding (G)-protein, in the late stages of the ACTH secretory pathway distal to the G-exocytosis (Ge)/calcium point of control.

    Topics: Adrenocorticotropic Hormone; Alprostadil; Animals; Calcium; Cell Fractionation; Dinoprost; Dinoprostone; Dose-Response Relationship, Drug; Guanosine 5'-O-(3-Thiotriphosphate); Intercellular Signaling Peptides and Proteins; Mice; Peptides; Pertussis Toxin; Prostaglandins; Signal Transduction; Tumor Cells, Cultured; Virulence Factors, Bordetella; Wasp Venoms

2002
Enhancement of arachidonic acid release and prostaglandin F(2alpha) formation by Na3VO4 in PC12 cells and GH3 cells.
    European journal of pharmacology, 2001, Apr-06, Volume: 417, Issue:1-2

    Both activation of phospholipase A2 causing arachidonic acid release and tyrosine phosphorylation have been proposed to be involved in neuronal functions. Previously, we reported that orthovanadate (Na3VO4), an inhibitor of tyrosine phosphatases, stimulated tyrosine phosphorylation in proteins and enhanced Ca2+-induced noradrenaline release in rat pheochromocytoma PC12 cells. However, the role of tyrosine phosphorylation on phospholipase A2 activity and/or arachidonic acid release in neuronal cells has not been well established. The effects of Na3VO4 on arachidonic acid release and prostaglandin F(2alpha) formation were investigated in two types of neuronal cell lines. In PC12 cells, addition of Na3VO4 stimulated [3H]arachidonic acid release and prostaglandin F(2alpha) formation in a concentration-dependent manner. Co-addition of 5 mM Na3VO4 enhanced ionomycin-stimulated [3H]arachidonic acid release. Na3VO4 also enhanced ionomycin-stimulated [3H]arachidonic acid release from GH3 cells, a clonal strain from rat anterior pituitary. These findings suggest that the tyrosine phosphorylation pathway regulates arachidonic acid release by phospholipase A2 and prostaglandin F(2alpha) formation in neuronal cells.

    Topics: Animals; Arachidonic Acid; Chelating Agents; Cytosol; Dinoprost; Dose-Response Relationship, Drug; Drug Synergism; Egtazic Acid; Hydrogen Peroxide; Intercellular Signaling Peptides and Proteins; Ionomycin; PC12 Cells; Peptides; Phospholipases A; Phospholipases A2; Rats; Tumor Cells, Cultured; Vanadates; Wasp Venoms

2001