dinoprost and dorsomorphin

dinoprost has been researched along with dorsomorphin* in 2 studies

Other Studies

2 other study(ies) available for dinoprost and dorsomorphin

ArticleYear
AMP-activated protein kinase inhibitor decreases prostaglandin F2α-stimulated interleukin-6 synthesis through p38 MAP kinase in osteoblasts.
    International journal of molecular medicine, 2012, Volume: 30, Issue:6

    We previously showed that prostaglandin F(2α) (PGF(2α)) stimulates the synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, in part via p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase but not stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) among the MAP kinase superfamily in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of AMP-activated protein kinase (AMPK), an intracellular energy sensor, in PGF(2α)-stimulated IL-6 synthesis in MC3T3-E1 cells. PGF(2α) time-dependently induced the phosphorylation of the AMPK α-subunit. Compound C, an inhibitor of AMPK, dose-dependently suppressed PGF(2α)-stimulated IL-6 release. Compound C reduced the PGF(2α)-induced acetyl-CoA carboxylase phosphorylation. In addition, PGF(2α)-stimulated IL-6 release in human osteoblasts was also inhibited by compound C. The IL-6 mRNA expression induced by PGF(2α) was markedly reduced by compound C. Downregulation of the AMPK α1-subunit by short interfering RNA (siRNA) significantly suppressed the PGF(2α)-stimulated IL-6 release. PGF(2α)-induced phosphorylation of p38 MAP kinase was inhibited by compound C, which failed to affect the p44/p42 MAP kinase phosphorylation. These results strongly suggest that AMPK regulates PGF(2α)-stimulated IL-6 synthesis via p38 MAP kinase in osteoblasts.

    Topics: 3T3 Cells; Acetyl-CoA Carboxylase; AMP-Activated Protein Kinases; Animals; Dinoprost; Gene Knockdown Techniques; Interleukin-6; MAP Kinase Signaling System; Mice; Osteoblasts; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Protein Processing, Post-Translational; Protein Subunits; Pyrazoles; Pyrimidines; RNA, Small Interfering

2012
AMP-activated protein kinase and hypoxic pulmonary vasoconstriction.
    European journal of pharmacology, 2008, Oct-24, Volume: 595, Issue:1-3

    Hypoxic pulmonary vasoconstriction is a vital homeostatic mechanism that aids ventilation-perfusion matching in the lung, for which the underlying mechanism(s) remains controversial. However, our most recent investigations strongly suggest that hypoxic pulmonary vasoconstriction is precipitated, at least in part, by the inhibition of mitochondrial oxidative phosphorylation by hypoxia, an increase in the AMP/ATP ratio and consequent activation of AMP-activated protein kinase (AMPK). Unfortunately, these studies lacked the definitive proof that can only be provided by selectively blocking AMPK-dependent signalling cascades. The aim of the present study was, therefore, to determine the effects of the AMPK inhibitor compound C upon: (1) phosphorylation in response to hypoxia of a classical AMPK substrate, acetyl CoA carboxylase, in rat pulmonary arterial smooth muscle and (2) hypoxic pulmonary vasoconstriction in rat isolated intrapulmonary arteries. Acetyl CoA carboxylase phosphorylation was increased approximately 3 fold in the presence of hypoxia (pO(2) = 16-21 mm Hg, 1 h) and 5-aminoimidazole-4-carboxamide riboside (AICAR; 1 mM; 4 h) and in a manner that was significantly attenuated by the AMPK antagonist compound C (40 microM). Most importantly, pre-incubation of intrapulmonary arteries with compound C (40 microM) inhibited phase II, but not phase I, of hypoxic pulmonary vasoconstriction. Likewise, compound C (40 microM) inhibited constriction by AICAR (1 mM). The results of the present study are consistent with the activation of AMPK being a key event in the initiation of the contractile response of pulmonary arteries to acute hypoxia.

    Topics: Acetyl-CoA Carboxylase; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Calcium; Dinoprost; Hypoxia; Male; Multienzyme Complexes; Phosphorylation; Potassium; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Pulmonary Artery; Pyrazoles; Pyrimidines; Rats; Rats, Sprague-Dawley; Ribonucleotides; Signal Transduction; Vasoconstriction

2008