dinoprost and diphenyliodonium

dinoprost has been researched along with diphenyliodonium* in 1 studies

Other Studies

1 other study(ies) available for dinoprost and diphenyliodonium

ArticleYear
The NADPH oxidase inhibitors iodonium diphenyl and cadmium sulphate inhibit hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries.
    Physiological research, 2000, Volume: 49, Issue:5

    Interest surrounds the role of an NADPH oxidase-like enzyme in hypoxic pulmonary vasoconstriction (HPV). We have studied the effects of the NADPH oxidase inhibitors iodonium diphenyl (ID) and cadmium sulphate (CdSO4) upon HPV of isolated rat pulmonary arteries (n = 73, internal diameter 545 +/- 23 microm). Vessels were preconstricted with prostaglandin F2alpha (PGF2alpha, 0.5 or 5 microM) prior to a hypoxic challenge. ID (10 or 50 microM), CdSO4 (100 microM) or vehicle (50 microl) was added for 30 min before re-exposure to PGF2alpha and hypoxia. ID and CdSO4 significantly inhibited HPV. In vessels preconstricted with 5 microM PGF2alpha, ID (10 and 50 microM) reduced HPV from 37.4 +/- 5.6 % to 9.67 +/- 4.4 % of the contractile response elicited by 80 mM KCl (P<0.05) and from 30.1 +/- 5.0 % to 0.63 +/- 0.6% 80 mM KCl response (P<0.01), respectively. CdSO4 (100 microM) reduced HPV from 29.4 +/-4.0 % to 17.1 +/- 2.2% 80 mM KCl response (P<0.05). In vessels preconstricted with 0.5 microM PGF2alpha, ID (10 and 50 microM) reduced HPV from 16.0 +/- 3.15% to 3.36 +/- 1.44 % 80 mM KCl response (P<0.01) and from 15.0 +/- 1.67 % to 2.82 +/- 1.40 % 80 mM KCl response (P<0.001), respectively. Constriction to PGF2alpha was potentiated by ID. ID and CdSO4, at concentrations previously shown to inhibit neutrophil NADPH oxidase, attenuate HPV in isolated rat pulmonary arteries. This suggests that an NADPH oxidase-like enzyme is involved in HPV and could act as the pulmonary oxygen sensor.

    Topics: Animals; Biphenyl Compounds; Cadmium Compounds; Dinoprost; Enzyme Inhibitors; Hypoxia; In Vitro Techniques; Male; NADPH Oxidases; Onium Compounds; Pulmonary Artery; Rats; Rats, Wistar; Sulfates; Vasoconstriction; Vasoconstrictor Agents

2000