diniconazole has been researched along with paclobutrazol* in 3 studies
3 other study(ies) available for diniconazole and paclobutrazol
Article | Year |
---|---|
Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry.
A rapid and sensitive multi-residue method was developed for the simultaneous quantification of eight chiral pesticides (including diniconazole, metalaxyl, paclobutrazol, epoxiconazole, myclobutanil, hexaconazole, napropamide and isocarbophos) at enantiomeric levels in environmental soils and sediments using chiral liquid chromatography-tandem mass spectrometry based on a combined pretreatment of matrix solid-phase dispersion and dispersive liquid-liquid microextraction (MSPD-DLLME). Under optimized conditions, 0.1 g of solid sample was dispersed with 0.4 g of C18-bonded silica sorbent, and 3 mL of methanol was used for eluting the analytes. The collected eluant was dried and then further purified by DLLME with 550 μL of dichloromethane and 960 μL of acetonitrile as extraction and disperser solvent, respectively. The established method was validated and found to be linear, precise, and accurate over the concentration range of 2-500 ng g Topics: Acetonitriles; Chromatography, Liquid; Epoxy Compounds; Limit of Detection; Liquid Phase Microextraction; Nitriles; Pesticides; Rivers; Soil Pollutants; Stereoisomerism; Tandem Mass Spectrometry; Triazoles; Water Pollutants, Chemical | 2018 |
Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.
The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting. Topics: Abscisic Acid; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Gene Expression Regulation, Plant; Heterocyclic Compounds, 4 or More Rings; Meristem; Plant Growth Regulators; Plant Proteins; Plant Tubers; Pyrimidines; Solanum tuberosum; Triazoles | 2012 |
The chiral separation of triazole pesticides enantiomers by amylose-tris (3,5-dimethylphenylcarbamate) chiral stationary phase.
The amylose-tris(3,5-dimethylphenylcarbamate) chiral stationary phase was synthesized and used to separate the enantiomers of triazole pesticides by high-performance liquid chromatography. The mobile phase was n-hexane-isopropanol applying a flow rate of 1.0 mL/min. Six triazole pesticides were enantioselectively separated. Myclobutanil, paclobutrazol, tebuconazole, and uniconazole obtained complete separation with the resolution factors of 5.73, 2.99, 1.72, and 2.07, respectively, and imazalil and diniconazole obtained partial separation with the resolution factors of 0.79 and 0.77 under the optimized conditions. The effect of the content of isopropanol as well as column temperature on the separation was investigated. A circular dichroism detector was used to identify the enantiomers and determine the elution orders. The results showed the low temperature was good for the chiral separation except for diniconazole. The thermodynamic parameters calculated based on linear Van't Hoff plots showed the chiral separations were controlled by enthalpy. Topics: Amylose; Chromatography, High Pressure Liquid; Imidazoles; Nitriles; Pesticides; Phenylcarbamates; Stereoisomerism; Temperature; Thermodynamics; Triazoles | 2008 |