diniconazole and epoxiconazole

diniconazole has been researched along with epoxiconazole* in 2 studies

Other Studies

2 other study(ies) available for diniconazole and epoxiconazole

ArticleYear
Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry.
    Chemosphere, 2018, Volume: 204

    A rapid and sensitive multi-residue method was developed for the simultaneous quantification of eight chiral pesticides (including diniconazole, metalaxyl, paclobutrazol, epoxiconazole, myclobutanil, hexaconazole, napropamide and isocarbophos) at enantiomeric levels in environmental soils and sediments using chiral liquid chromatography-tandem mass spectrometry based on a combined pretreatment of matrix solid-phase dispersion and dispersive liquid-liquid microextraction (MSPD-DLLME). Under optimized conditions, 0.1 g of solid sample was dispersed with 0.4 g of C18-bonded silica sorbent, and 3 mL of methanol was used for eluting the analytes. The collected eluant was dried and then further purified by DLLME with 550 μL of dichloromethane and 960 μL of acetonitrile as extraction and disperser solvent, respectively. The established method was validated and found to be linear, precise, and accurate over the concentration range of 2-500 ng g

    Topics: Acetonitriles; Chromatography, Liquid; Epoxy Compounds; Limit of Detection; Liquid Phase Microextraction; Nitriles; Pesticides; Rivers; Soil Pollutants; Stereoisomerism; Tandem Mass Spectrometry; Triazoles; Water Pollutants, Chemical

2018
Enantiomeric separation of triazole fungicides with 3-μm and 5-μml particle chiral columns by reverse-phase high-performance liquid chromatography.
    Chirality, 2011, Volume: 23, Issue:6

    This study used chiral columns packed with 3-μm and 5-μm particles to comparatively separate enantiomers of 9 triazole fungicides, and Lux Cellulose-1 columns with chiral stationary phase of cellulose-tris-(3,5-dimethylphenylcarbamate) were used on reverse-phase high-performance liquid chromatography with flow rates of 0.3 and 1.0 mL min(-1) for 3-μm and 5-μm columns, respectively. The (+)-enantiomers of hexaconazole (1), tetraconazole (4), myclobutanil (7), fenbuconazole (8) and the (-)-enantiomers of flutriafol (2), diniconazole (3), epoxiconazole (5), penconazole (6), triadimefon (9) were firstly eluted from both columns, the elution orders identified with an optical rotation detector didn't change with variety of column particles and mobile phases (acetronitrile/water and methanol/water). The plots of natural logarithms of the selectivity factors (ln α) for all fungicides except penconazole (6) versus the inverse of temperature (1/T) were linear in range of 5-40°C. The thermodynamic parameters (ΔH°, ΔS°, ΔΔH° and ΔΔS°) were calculated using Van't Hoff equations to understand the thermosynamic driving forces for enantioseparation. This work will be very helpful to obtain good enantiomeric separation and establish more efficient analytical method for triazole fungicides. Chirality, 2011. © 2011 Wiley-Liss, Inc.

    Topics: Animals; Chlorobenzenes; Chromatography, High Pressure Liquid; Chromatography, Reverse-Phase; Epoxy Compounds; Fungicides, Industrial; Mice; Nitriles; Particle Size; Stereoisomerism; Temperature; Thermodynamics; Triazoles

2011