diltiazem has been researched along with wortmannin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (20.00) | 18.2507 |
2000's | 2 (40.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Gilani, AH; Rashid, F; Saeed, SA; Shah, BH | 1 |
Cheema, M; Connor, JD; Gilani, AH; Rasheed, H; Rizvi, Z; Saeed, SA | 1 |
Bechtel, LK; Haverstick, DM; Holstege, CP | 1 |
5 other study(ies) available for diltiazem and wortmannin
Article | Year |
---|---|
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Dopamine potentiation of calcium ionophore, A-23187-induced platelet aggregation.
Topics: 3,4-Dihydroxyphenylacetic Acid; Alkaloids; Androstadienes; Aspirin; Benzophenanthridines; Calcimycin; Calcium; Chlorpromazine; Diltiazem; Dopamine; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; GTP-Binding Proteins; Haloperidol; Homovanillic Acid; Humans; Indomethacin; Ion Transport; Ionophores; Phenanthridines; Phentolamine; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Platelet Aggregation; Propranolol; Protein Kinase C; Protein-Tyrosine Kinases; Receptors, Dopamine; Serotonin; Signal Transduction; Verapamil; Wortmannin | 1997 |
Second messengers in platelet aggregation evoked by serotonin and A23187, a calcium ionophore.
Topics: Adult; Alkaloids; Androstadienes; Benzophenanthridines; Blood Platelets; Calcimycin; Calcium Channel Blockers; Cyproheptadine; Diltiazem; Dose-Response Relationship, Drug; Drug Combinations; Drug Synergism; Enzyme Inhibitors; Estrenes; Female; Genistein; Humans; In Vitro Techniques; Ionophores; Male; Methysergide; Phenanthridines; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Platelet Aggregation; Pyrrolidinones; Second Messenger Systems; Serotonin; Type C Phospholipases; Verapamil; Wortmannin | 2001 |
Verapamil toxicity dysregulates the phosphatidylinositol 3-kinase pathway.
Topics: Adipocytes; Androstadienes; Animals; Blotting, Western; Calcium Channel Blockers; Cells, Cultured; Diltiazem; Glucose; Insulin; Mice; Nifedipine; Phosphatidylinositol 3-Kinases; Signal Transduction; Verapamil; Wortmannin | 2008 |