Page last updated: 2024-08-23

diltiazem and vinorelbine

diltiazem has been researched along with vinorelbine in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (55.56)29.6817
2010's4 (44.44)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Huang, L; Humphreys, JE; Morgan, JB; Polli, JW; Serabjit-Singh, CS; Webster, LO; Wring, SA1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Evans, CA; Jolivette, LJ; Nagilla, R; Ward, KW1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Chen, X; Lin, X; Skolnik, S; Wang, J1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for diltiazem and vinorelbine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

8 other study(ies) available for diltiazem and vinorelbine

ArticleYear
Rational use of in vitro P-glycoprotein assays in drug discovery.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 299, Issue:2

    Topics: Adenosine Triphosphatases; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cells, Cultured; Chromatography, Liquid; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Humans; Mass Spectrometry; Pharmacology; Spodoptera

2001
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Extrapolation of preclinical pharmacokinetics and molecular feature analysis of "discovery-like" molecules to predict human pharmacokinetics.
    Drug metabolism and disposition: the biological fate of chemicals, 2006, Volume: 34, Issue:7

    Topics: Animals; Biometry; Dogs; Drug Evaluation, Preclinical; Haloperidol; Haplorhini; Humans; Injections, Intravenous; Liver; Liver Circulation; Metabolic Clearance Rate; Mifepristone; Molecular Structure; Molecular Weight; Rats; Reproducibility of Results

2006
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity

2011