Page last updated: 2024-08-23

diltiazem and azelastine

diltiazem has been researched along with azelastine in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's5 (71.43)29.6817
2010's2 (28.57)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Gao, F; Lombardo, F; Obach, RS; Shalaeva, MY1
Cianchetta, G; Cruciani, G; Fravolini, A; Giesing, D; Singleton, RW; Vaz, RJ; Wildgoose, M; Zhang, M1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Lombardo, F; Obach, RS; Waters, NJ1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B1
Bellman, K; Knegtel, RM; Settimo, L1

Other Studies

7 other study(ies) available for diltiazem and azelastine

ArticleYear
Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data.
    Journal of medicinal chemistry, 2002, Jun-20, Volume: 45, Issue:13

    Topics: Blood Proteins; Chemical Phenomena; Chemistry, Physical; Half-Life; Humans; Hydrogen-Ion Concentration; Models, Biological; Pharmaceutical Preparations; Pharmacokinetics; Protein Binding

2002
A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-based 3D-QSAR.
    Journal of medicinal chemistry, 2005, Apr-21, Volume: 48, Issue:8

    Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Caco-2 Cells; Fluoresceins; Fluorescent Dyes; Humans; Models, Molecular; Multivariate Analysis; Permeability; Quantitative Structure-Activity Relationship

2005
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
    Journal of applied toxicology : JAT, 2012, Volume: 32, Issue:10

    Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers

2012
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014