diltiazem has been researched along with aminopyrine in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (12.50) | 18.2507 |
2000's | 3 (37.50) | 29.6817 |
2010's | 4 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Caron, G; Ermondi, G | 1 |
Akamatsu, M; Fujikawa, M; Nakao, K; Shimizu, R | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Akamatsu, M | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Kaplan, DS; King, RL; Levine, RA; Nandi, J | 1 |
8 other study(ies) available for diltiazem and aminopyrine
Article | Year |
---|---|
Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk).
Topics: 1-Octanol; Alkanes; Hydrogen-Ion Concentration; Least-Squares Analysis; Mathematics; Models, Chemical; Models, Molecular; Solvents; Water | 2005 |
QSAR study on permeability of hydrophobic compounds with artificial membranes.
Topics: Biological Transport; Caco-2 Cells; Drug Evaluation, Preclinical; Humans; Hydrophobic and Hydrophilic Interactions; Membranes, Artificial; Permeability; Pharmaceutical Preparations; Quantitative Structure-Activity Relationship | 2007 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Importance of physicochemical properties for the design of new pesticides.
Topics: Anabasine; Animals; Biological Availability; Cell Membrane Permeability; Chemical Phenomena; Drug Design; Humans; Imidazoles; Insecticides; Neonicotinoids; Nitro Compounds; Pesticides; Quantitative Structure-Activity Relationship; Receptors, Nicotinic | 2011 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Mechanisms of gastric proton pump inhibition by calcium channel antagonists.
Topics: Adenosine Triphosphatases; Aminopyrine; Animals; Colforsin; Diltiazem; Gastric Acid; Gastric Mucosa; H(+)-K(+)-Exchanging ATPase; Microsomes; Oxygen Consumption; Parietal Cells, Gastric; Rabbits; Rana catesbeiana; Verapamil | 1990 |