dihydroxyphenylalanine has been researched along with okadaic acid in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Fisone, G; Goiny, M; Goldstein, M; Haycock, J; Herrera-Marschitz, M; Hökfelt, T; Lindgren, N; Lindskog, M; Xu, ZQ | 1 |
Fisone, G; Haycock, J; Herrera-Marschitz, M; Hökfelt, T; Lindgren, N; Xu, ZQ | 1 |
2 other study(ies) available for dihydroxyphenylalanine and okadaic acid
Article | Year |
---|---|
Regulation of tyrosine hydroxylase activity and phosphorylation at Ser(19) and Ser(40) via activation of glutamate NMDA receptors in rat striatum.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Antibody Specificity; Catalytic Domain; Caudate Nucleus; Colforsin; Dihydroxyphenylalanine; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Glutamic Acid; In Vitro Techniques; Male; N-Methylaspartate; Neurons; Okadaic Acid; Oxidopamine; Phosphorylation; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Serine; Sympatholytics; Tyrosine 3-Monooxygenase | 2000 |
Dopamine D(2) receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum.
Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Colforsin; Corpus Striatum; Dihydroxyphenylalanine; Dopamine; Dopamine Agonists; Male; N-Methylaspartate; Nerve Tissue Proteins; Okadaic Acid; Phosphodiesterase Inhibitors; Phosphoprotein Phosphatases; Phosphorylation; Phosphoserine; Protein Phosphatase 1; Protein Processing, Post-Translational; Quinpirole; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Tyrosine 3-Monooxygenase | 2001 |