dihydrotachysterol and paricalcitol

dihydrotachysterol has been researched along with paricalcitol* in 2 studies

Other Studies

2 other study(ies) available for dihydrotachysterol and paricalcitol

ArticleYear
Effects of 'non-calcaemic' vitamin D analogues on 24-hydroxylase expression in MG-63 osteoblast-like cells.
    Nephron. Physiology, 2003, Volume: 94, Issue:4

    New 'non-calcaemic' analogues of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are entering the clinical arena and some of them have been shown to have differential effects in bone. This may have a bearing on the evolution of bone lesions in uraemic patients receiving vitamin D therapies. A potential mechanism for differential effects of analogues lies in their target cell inactivation.. Using a human osteoblastic cell line, MG-63, three analogues, 22-oxacalcitriol (OCT), 19-nor-1,25-dihydroxyvitamin D2 (paricalcitol) and 1alpha,25-dihydroxydihydrotachysterol2(1,25(OH)2DHT2), were compared with 1,25(OH)2D3 for (1) their affinity for the vitamin D receptor (VDR) by competitive displacement of tritiated 1,25(OH)2D3 from calf thymus VDR; (2) effects on 24-hydroxylase mRNA expression using comparative RT-PCR, and (3) rates of metabolism, using high performance liquid chromatography, over a 24-hour time course.. Relative VDR-binding affinities (IC50) were 1,25(OH)2D3 (100%), OCT (25%), paricalcitol (14%) and 1,25(OH)2DHT2 (0.3%). A > or =3-fold increase in 24-hydroxylase mRNA expression was observed for all compounds at 2 h peaking at 7- to 8-fold above control levels by 12 h, with no significant difference between the analogues and 1,25(OH)2D3. Differences in their rates of metabolism were observed [calculated t(1/2) values = OCT (1.2 h) > paricalcitol (2.3 h) > 1,25(OH)2D3 (2.6 h) > 1,25(OH)2DHT2 (3.4 h)], with OCT having a significantly shorter half-life.. In MG-63 cells these analogues up-regulate 24-hydroxylase mRNA expression with similar potency, in each case accelerating ligand inactivation, despite significant differences in VDR affinity. VDR affinity did not correspond to either 24-hydroxylase mRNA expression or the rates of ligand disappearance, suggesting cellular metabolism is one of several factors that determine the analogue specificity of these agents in bone.

    Topics: Animals; Calcitriol; Cattle; Cell Line; Cytochrome P-450 Enzyme System; Dihydrotachysterol; Ergocalciferols; Gene Expression Regulation, Enzymologic; Humans; Hydroxylation; Mixed Function Oxygenases; Osteoblasts; Protein Binding; Receptors, Calcitriol; Steroid Hydroxylases; Thymus Gland; Vitamin D3 24-Hydroxylase

2003
Effects of new analogues of vitamin D on bone cells: implications for treatment of uremic bone disease.
    Kidney international, 1999, Volume: 55, Issue:2

    The use of calcitriol in the treatment of uremic hyperparathyroidism and renal osteodystrophy is limited in many patients by hypercalcemic side-effects. New less calcemic analogues of calcitriol are being developed, and some are under clinical evaluation. To investigate whether these compounds possess important differences in their action on bone cells, we have studied their effects [with and without parathyroid hormone (PTH)] on the release and synthesis of the resorptive osteotropic cytokine, interleukin-6 (IL-6).. MG 63 and SaOS-2 human osteoblastic cell lines were cultured for 6 or 24 hours in media containing calcitriol, the sterols of interest, or 1-34 synthetic PTH. IL-6 release was assayed by commercially available enzyme-linked immunosorbent assay. IL-6 mRNA levels were assessed by reverse transcriptase-polymerase chain reaction.. We found that calcitriol and paricalcitol behaved in a similar fashion, resulting in increased IL-6 release only at higher concentrations (10(-7) to 10(-9) M). In contrast, 22-oxacalcitriol and 1,25-dihydroxydihydrotachysterol2 stimulated release to a similar extent but at concentrations three to four orders of magnitude lower (10(-11) to 10(-13) M), despite being less potent as suppressers of parathyroid function than calcitriol. Studies of IL-6 mRNA showed a similar pattern of concentration and cell line-dependent transcription.. Compounds stimulating IL-6 release at concentrations achievable during the treatment of uremic hyperparathyroidism might favor continuing linked bone formation and resorption and thereby avoid adynamic bone disease while still allowing profound suppression of PTH.

    Topics: Bone Diseases; Calcitriol; Cell Line; Dihydrotachysterol; Ergocalciferols; Humans; Interleukin-1; Osteoblasts; Parathyroid Hormone; RNA, Messenger; Uremia; Vitamin D

1999