dihydropyridines has been researched along with 3-3--dipropyl-2-2--thiadicarbocyanine* in 1 studies
1 other study(ies) available for dihydropyridines and 3-3--dipropyl-2-2--thiadicarbocyanine
Article | Year |
---|---|
Voltage-dependent calcium channels in skeletal muscle transverse tubules. Measurements of calcium efflux in membrane vesicles.
Transverse tubule membranes isolated from rabbit skeletal muscle consist mainly of sealed vesicles that are oriented primarily inside out. These membranes contain a high density of binding sites for 1,4-dihydropyridine calcium channel antagonists. The presence of functional voltage-dependent calcium channels in these membranes has been demonstrated by their ability to mediate 45Ca2+ efflux in response to changes in membrane potential. Fluorescence changes of the voltage-sensitive dye, 3,3'-dipropyl-2,2'-thiadicarbocyanine, have shown that transverse tubule vesicles may generate and maintain membrane potentials in response to establishing potassium gradients across the membrane in the presence of valinomycin. A two-step procedure has been developed to measure voltage-dependent calcium fluxes. Vesicles loaded with 45Ca2+ are first diluted into a buffer designed to generate a membrane potential mimicking the resting state of the cell and to reduce the extravesicular Ca2+ to sub-micromolar levels. 45Ca2+ efflux is then measured upon subsequent depolarization. Flux responses are modulated with appropriate pharmacological specificity by 1,4-dihydropyridines and are inhibited by other calcium channel antagonists such as lanthanum and verapamil. Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Benzothiazoles; Calcium Channel Blockers; Calcium Channels; Calcium Radioisotopes; Carbocyanines; Cell Membrane; Dihydropyridines; Edetic Acid; Fluorescent Dyes; Isradipine; Lanthanum; Membrane Potentials; Muscles; Nitrendipine; Oxadiazoles; Potassium; Rabbits; Verapamil | 1989 |