Page last updated: 2024-09-02

dihydrokainate and dizocilpine maleate

dihydrokainate has been researched along with dizocilpine maleate in 9 studies

Compound Research Comparison

Studies
(dihydrokainate)
Trials
(dihydrokainate)
Recent Studies (post-2010)
(dihydrokainate)
Studies
(dizocilpine maleate)
Trials
(dizocilpine maleate)
Recent Studies (post-2010) (dizocilpine maleate)
1800467,74191,449

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (33.33)18.2507
2000's3 (33.33)29.6817
2010's3 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Hestrin, S; Nicoll, RA; Sah, P1
Massieu, L; Morales-Villagrán, A; Tapia, R1
Arias, C; Arrieta, I; Massieu, L; Tapia, R1
Attwell, D; Hamann, M; Marie, H; Rossi, DJ1
Grebenyuk, S; Kirichok, Y; Krishtal, O; Lozovaya, N; Melnik, S; Tsintsadze, T1
Furuya, T; Kashiwagi, K; Pan, Z1
An, C; Su, H; Sun, X; Wang, D; Xu, J; Yan, J; Zhong, J; Zhu, H1
Agostinho, P; Augusto, E; Boison, D; Chen, JF; Cunha, RA; Matos, M; Shen, HY; Wang, Y; Wang, YT; Wei, CJ1

Other Studies

9 other study(ies) available for dihydrokainate and dizocilpine maleate

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices.
    Neuron, 1990, Volume: 5, Issue:3

    Topics: Animals; Aspartic Acid; Dibenzocycloheptenes; Dizocilpine Maleate; Electrophysiology; Glutamates; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Ketamine; N-Methylaspartate; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Synapses; Temperature; Time Factors

1990
Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study.
    Journal of neurochemistry, 1995, Volume: 64, Issue:5

    Topics: Animals; Cell Death; Choline; Choline O-Acetyltransferase; Corpus Striatum; Dicarboxylic Acids; Dizocilpine Maleate; Extracellular Space; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Glutamic Acid; Kainic Acid; Male; Microdialysis; Nerve Degeneration; Neurons; Neurotransmitter Uptake Inhibitors; Pyrrolidines; Quinoxalines; Rats; Rats, Wistar

1995
Neuronal damage and MAP2 changes induced by the glutamate transport inhibitor dihydrokainate and by kainate in rat hippocampus in vivo.
    Experimental brain research, 1997, Volume: 116, Issue:3

    Topics: Animals; Biological Transport; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Immunohistochemistry; Kainic Acid; Male; Microtubule-Associated Proteins; Neurons; Quinoxalines; Rats; Rats, Wistar

1997
Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia.
    The European journal of neuroscience, 2002, Volume: 15, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 2; Glutamic Acid; Hippocampus; Hypoxia-Ischemia, Brain; Kainic Acid; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Knockout; N-Methylaspartate; Organ Culture Techniques; Patch-Clamp Techniques; Pyramidal Cells; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate

2002
Protective cap over CA1 synapses: extrasynaptic glutamate does not reach the postsynaptic density.
    Brain research, 2004, Jun-18, Volume: 1011, Issue:2

    Topics: 4-Aminopyridine; Amino Acid Transport System X-AG; Animals; Animals, Newborn; Aspartic Acid; Dizocilpine Maleate; Drug Interactions; Evoked Potentials; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Models, Neurological; N-Methylaspartate; Neural Inhibition; Neurons; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Synapses

2004
Role of retinal glial cell glutamate transporters in retinal ganglion cell survival following stimulation of NMDA receptor.
    Current eye research, 2012, Volume: 37, Issue:3

    Topics: Acetophenones; Animals; Animals, Newborn; Benzopyrans; Blotting, Western; Cell Survival; Cells, Cultured; Coculture Techniques; Culture Media; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 1; Excitatory Amino Acid Transporter 2; Kainic Acid; N-Methylaspartate; Neuroglia; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Retinal Ganglion Cells; RNA, Messenger

2012
Increasing glutamate promotes ischemia-reperfusion-induced ventricular arrhythmias in rats in vivo.
    Pharmacology, 2014, Volume: 93, Issue:1-2

    Topics: Amines; Animals; Arrhythmias, Cardiac; Calcium; Cells, Cultured; Cyclohexanecarboxylic Acids; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Gabapentin; gamma-Aminobutyric Acid; Glutamic Acid; Heart Ventricles; Kainic Acid; Male; Mitochondria, Heart; Myocardial Reperfusion Injury; Myocardium; Myocytes, Cardiac; Rats; Rats, Sprague-Dawley; Sarcoplasmic Reticulum Calcium-Transporting ATPases

2014
Deletion of adenosine A2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia.
    Biological psychiatry, 2015, Dec-01, Volume: 78, Issue:11

    Topics: Animals; Astrocytes; Cognition Disorders; Disease Models, Animal; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 2; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Glutamic Acid; Homeostasis; Kainic Acid; Locomotion; Mice; Mice, Inbred C57BL; Mice, Transgenic; Psychomotor Disorders; Pyrimidines; Receptor, Adenosine A2A; Receptors, N-Methyl-D-Aspartate; Synaptosomes; Time Factors; Triazoles

2015