dihydrokainate has been researched along with cyclothiazide in 4 studies
Studies (dihydrokainate) | Trials (dihydrokainate) | Recent Studies (post-2010) (dihydrokainate) | Studies (cyclothiazide) | Trials (cyclothiazide) | Recent Studies (post-2010) (cyclothiazide) |
---|---|---|---|---|---|
180 | 0 | 46 | 396 | 4 | 51 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Trussell, LO; Turecek, R | 1 |
Isaac, JT; Kidd, FL | 1 |
Chen, JH; Nie, H; Pan, ZZ; Weng, HR | 1 |
4 other study(ies) available for dihydrokainate and cyclothiazide
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Control of synaptic depression by glutamate transporters.
Topics: Action Potentials; Alanine Transaminase; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acid Transport System X-AG; Animals; Anti-Bacterial Agents; Antihypertensive Agents; Aspartic Acid; ATP-Binding Cassette Transporters; Benzothiadiazines; Chick Embryo; Cochlear Nucleus; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Glutamic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neural Inhibition; Neuronal Plasticity; Receptors, AMPA; Synaptic Transmission | 2000 |
Glutamate transport blockade has a differential effect on AMPA and NMDA receptor-mediated synaptic transmission in the developing barrel cortex.
Topics: Amino Acid Transport System X-AG; Animals; Aspartic Acid; ATP-Binding Cassette Transporters; Benzothiadiazines; Biological Transport; Dicarboxylic Acids; Diuretics; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glutamic Acid; In Vitro Techniques; Kainic Acid; Neurotransmitter Uptake Inhibitors; Picrotoxin; Pyrrolidines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Sodium Chloride Symporter Inhibitors; Somatosensory Cortex; Synaptic Transmission; Thalamus | 2000 |
Glial glutamate transporter 1 regulates the spatial and temporal coding of glutamatergic synaptic transmission in spinal lamina II neurons.
Topics: Animals; Benzothiadiazines; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Enzyme Inhibitors; Excitatory Amino Acid Transporter 2; Excitatory Postsynaptic Potentials; Glutamic Acid; In Vitro Techniques; Kainic Acid; Male; Neurons; Oligopeptides; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Spinal Cord; Synaptic Transmission | 2007 |