dihydrokainate has been researched along with colforsin in 2 studies
Studies (dihydrokainate) | Trials (dihydrokainate) | Recent Studies (post-2010) (dihydrokainate) | Studies (colforsin) | Trials (colforsin) | Recent Studies (post-2010) (colforsin) |
---|---|---|---|---|---|
180 | 0 | 46 | 13,460 | 46 | 1,298 |
Protein | Taxonomy | dihydrokainate (IC50) | colforsin (IC50) |
---|---|---|---|
nuclear receptor subfamily 0 group B member 1 | Homo sapiens (human) | 1.729 | |
5-hydroxytryptamine receptor 1A | Homo sapiens (human) | 0.041 | |
Adenylate cyclase type 1 | Homo sapiens (human) | 0.0955 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Colbert, CM; Eskin, A; Pita-Almenar, JD; Zou, S | 1 |
2 other study(ies) available for dihydrokainate and colforsin
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP.
Topics: Alanine Transaminase; Analysis of Variance; Animals; Animals, Newborn; Aspartic Acid; Astrocytes; Biophysics; Biotinylation; Cells, Cultured; Colforsin; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 1; Excitatory Amino Acid Transporter 2; Excitatory Postsynaptic Potentials; Flow Cytometry; Glial Fibrillary Acidic Protein; Glutamates; Glutamic Acid; Glycine; Hippocampus; In Vitro Techniques; Indoles; Kainic Acid; Long-Term Potentiation; Male; Neurons; Protein Transport; Quinoxalines; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin; Valine | 2012 |