Page last updated: 2024-09-02

dihydrokainate and 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

dihydrokainate has been researched along with 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline in 10 studies

Compound Research Comparison

Studies
(dihydrokainate)
Trials
(dihydrokainate)
Recent Studies (post-2010)
(dihydrokainate)
Studies
(2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline)
Trials
(2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline)
Recent Studies (post-2010) (2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline)
1800461,2160229

Protein Interaction Comparison

ProteinTaxonomydihydrokainate (IC50)2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline (IC50)
Glutamate receptor 1Rattus norvegicus (Norway rat)0.5781
Glutamate receptor 2Rattus norvegicus (Norway rat)0.5781
Glutamate receptor 3Rattus norvegicus (Norway rat)0.5781
Glutamate receptor 4Rattus norvegicus (Norway rat)0.5781
Glutamate receptor ionotropic, kainate 1Rattus norvegicus (Norway rat)2.909
Glutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)0.2
Glutamate receptor ionotropic, kainate 2Rattus norvegicus (Norway rat)2.909
Glutamate receptor 1Homo sapiens (human)6
Glutamate receptor 2Homo sapiens (human)2.5
Glutamate receptor 3Homo sapiens (human)1.9
Glutamate receptor ionotropic, kainate 3Rattus norvegicus (Norway rat)2.909
Glutamate receptor 4Homo sapiens (human)1.1
Glutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)0.2
Glutamate receptor ionotropic, NMDA 2BRattus norvegicus (Norway rat)0.2
Glutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)0.2
Glutamate receptor ionotropic, kainate 4Rattus norvegicus (Norway rat)2.909
Glutamate receptor ionotropic, NMDA 2DRattus norvegicus (Norway rat)0.2
Glutamate receptor ionotropic, kainate 5Rattus norvegicus (Norway rat)2.909
Glutamate receptor ionotropic, NMDA 3BRattus norvegicus (Norway rat)0.2
Glutamate receptor ionotropic, NMDA 3ARattus norvegicus (Norway rat)0.2

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (30.00)18.2507
2000's5 (50.00)29.6817
2010's2 (20.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Massieu, L; Morales-Villagrán, A; Tapia, R1
Bouazzaoui, M; Gombos, G; Kannengieser, C; Procksch, O1
Arias, C; Arrieta, I; Massieu, L; Tapia, R1
Isaac, JT; Kidd, FL1
Kullmann, DM; Semyanov, A1
Attwell, D; Hamann, M; Marie, H; Rossi, DJ1
Grebenyuk, S; Kirichok, Y; Krishtal, O; Lozovaya, N; Melnik, S; Tsintsadze, T1
DeSilva, TM; Goldhoff, PE; Kabakov, AY; Rosenberg, PA; Volpe, JJ1
Iniouchine, MY; Sibarov, DA; Vol'nova, AB1
Artigas, F; Castañé, A; Gasull-Camós, J; Tarrés-Gatius, M1

Other Studies

10 other study(ies) available for dihydrokainate and 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline

ArticleYear
Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study.
    Journal of neurochemistry, 1995, Volume: 64, Issue:5

    Topics: Animals; Cell Death; Choline; Choline O-Acetyltransferase; Corpus Striatum; Dicarboxylic Acids; Dizocilpine Maleate; Extracellular Space; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Glutamic Acid; Kainic Acid; Male; Microdialysis; Nerve Degeneration; Neurons; Neurotransmitter Uptake Inhibitors; Pyrrolidines; Quinoxalines; Rats; Rats, Wistar

1995
Kainic acid, AMPA, and dihydrokainic acid effect on uptake and efflux of D-[3H] aspartic acid in cerebellar slices.
    Neurochemical research, 1996, Volume: 21, Issue:12

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Cerebellum; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Kainic Acid; Kinetics; Quinoxalines; Rats; Rats, Wistar; Tetrodotoxin; Tritium

1996
Neuronal damage and MAP2 changes induced by the glutamate transport inhibitor dihydrokainate and by kainate in rat hippocampus in vivo.
    Experimental brain research, 1997, Volume: 116, Issue:3

    Topics: Animals; Biological Transport; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Immunohistochemistry; Kainic Acid; Male; Microtubule-Associated Proteins; Neurons; Quinoxalines; Rats; Rats, Wistar

1997
Glutamate transport blockade has a differential effect on AMPA and NMDA receptor-mediated synaptic transmission in the developing barrel cortex.
    Neuropharmacology, 2000, Mar-03, Volume: 39, Issue:5

    Topics: Amino Acid Transport System X-AG; Animals; Aspartic Acid; ATP-Binding Cassette Transporters; Benzothiadiazines; Biological Transport; Dicarboxylic Acids; Diuretics; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Glutamic Acid; In Vitro Techniques; Kainic Acid; Neurotransmitter Uptake Inhibitors; Picrotoxin; Pyrrolidines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Sodium Chloride Symporter Inhibitors; Somatosensory Cortex; Synaptic Transmission; Thalamus

2000
Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors.
    Neuron, 2000, Volume: 25, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; gamma-Aminobutyric Acid; Glutamic Acid; Guinea Pigs; Hippocampus; In Vitro Techniques; Interneurons; Kainic Acid; Neural Inhibition; Propionates; Quinoxalines; Receptors, Metabotropic Glutamate; Signal Transduction; Synaptic Transmission

2000
Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia.
    The European journal of neuroscience, 2002, Volume: 15, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 2; Glutamic Acid; Hippocampus; Hypoxia-Ischemia, Brain; Kainic Acid; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Knockout; N-Methylaspartate; Organ Culture Techniques; Patch-Clamp Techniques; Pyramidal Cells; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate

2002
Protective cap over CA1 synapses: extrasynaptic glutamate does not reach the postsynaptic density.
    Brain research, 2004, Jun-18, Volume: 1011, Issue:2

    Topics: 4-Aminopyridine; Amino Acid Transport System X-AG; Animals; Animals, Newborn; Aspartic Acid; Dizocilpine Maleate; Drug Interactions; Evoked Potentials; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Models, Neurological; N-Methylaspartate; Neural Inhibition; Neurons; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Synapses

2004
Regulation of glutamate transport in developing rat oligodendrocytes.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009, Jun-17, Volume: 29, Issue:24

    Topics: Animals; Animals, Newborn; Aspartic Acid; Benzodiazepines; Bicuculline; Brain; Cells, Cultured; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 2; Excitatory Amino Acid Transporter 3; Female; Fibroblast Growth Factors; GABA Antagonists; Gangliosides; Gene Expression Regulation, Developmental; Glutamic Acid; Kainic Acid; Membrane Potentials; Neurons; O Antigens; Oligodendroglia; Patch-Clamp Techniques; Platelet-Derived Growth Factor; Pregnancy; Quinoxalines; Rats; Rats, Long-Evans; Sodium Channel Blockers; Tetrodotoxin; Tritium

2009
Comparative analysis of changes in membrane currents in neurons and astrocytes in rat hippocampal slices after stimulation of glutamatergic transmission.
    Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections, 2013, Volume: 449

    Topics: Animals; Astrocytes; Electrophysiology; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 2; Hippocampus; In Vitro Techniques; Kainic Acid; Neurons; Ouabain; Patch-Clamp Techniques; Potassium; Quinoxalines; Rats; Receptors, Glutamate; Synaptic Transmission

2013
Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats.
    Translational psychiatry, 2017, 02-21, Volume: 7, Issue:2

    Topics: Affect; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Behavior, Animal; Citalopram; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 2; Glutamic Acid; Kainic Acid; Limbic Lobe; Male; Neuroglia; Prefrontal Cortex; Proto-Oncogene Proteins c-fos; Quinoxalines; Raphe Nuclei; Rats; Selective Serotonin Reuptake Inhibitors; Serotonin; Veratridine

2017