digoxin and piperine

digoxin has been researched along with piperine* in 2 studies

Other Studies

2 other study(ies) available for digoxin and piperine

ArticleYear
In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression.
    Toxicology and applied pharmacology, 2008, Aug-01, Volume: 230, Issue:3

    Piperine, a major component of black pepper, is used as spice and nutrient enhancer. The purpose of the present study was to evaluate the effects of acute and prolonged piperine exposure on cellular P-gp expression and function in vitro and in vivo. Piperine at concentrations ranging from 10 to 100 microM, determined by MTT assay to be non-cytotoxic, was observed to inhibit P-gp mediated efflux transport of [(3)H]-digoxin across L-MDR1 and Caco-2 cell monolayers. The acute inhibitory effect was dependent on piperine concentration, with abolishment of [(3)H]-digoxin polarized transport attained at 50 microM of piperine. In contrast, prolonged (48 and 72 h) co-incubation of Caco-2 cell monolayers with piperine (50 and 100 microM) increased P-gp activity through an up-regulation of cellular P-gp protein and MDR1 mRNA levels. The up-regulated protein was functionally active, as demonstrated by a higher degree of [(3)H]-digoxin efflux across the cell monolayers, but the induction was readily reversed by the removal of the spice from the culture medium. Peroral administration of piperine at the dose of 112 microg/kg body weight/day to male Wistar rats for 14 consecutive days also led to increased intestinal P-gp levels. However, there was a concomitant reduction in the rodent liver P-gp although the kidney P-gp level was unaffected. Our data suggest that caution should be exercised when piperine is to be co-administered with drugs that are P-gp substrates, particularly for patients whose diet relies heavily on pepper.

    Topics: Alkaloids; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Benzodioxoles; Biological Transport; Caco-2 Cells; Cell Proliferation; Digoxin; Humans; LLC-PK1 Cells; Male; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Wistar; Swine

2008
Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4.
    The Journal of pharmacology and experimental therapeutics, 2002, Volume: 302, Issue:2

    Dietary constituents (e.g., in grapefruit juice; NaCl) and phytochemicals (e.g., St. John's wort) are important agents modifying drug metabolism and transport and thereby contribute to interindividual variability in drug disposition. Most of these drug-food interactions are due to induction or inhibition of P-glycoprotein and/or CYP3A4. Preliminary data indicate that piperine, a major component of black pepper, inhibits drug-metabolizing enzymes in rodents and increases plasma concentrations of several drugs, including P-glycoprotein substrates (phenytoin and rifampin) in humans. However, there are no direct data whether piperine is an inhibitor of human P-glycoprotein and/or CYP3A4. We therefore investigated the influence of piperine on P-glycoprotein-mediated, polarized transport of digoxin and cyclosporine in monolayers of Caco-2 cells. Moreover, by using human liver microsomes we determined the effect of piperine on CYP3A4-mediated formation of the verapamil metabolites D-617 and norverapamil. Piperine inhibited digoxin and cyclosporine A transport in Caco-2 cells with IC(50) values of 15.5 and 74.1 microM, respectively. CYP3A4-catalyzed formation of D-617 and norverapamil was inhibited in a mixed fashion, with K(i) values of 36 +/- 8 (liver 1)/49 +/- 6 (liver 2) and 44 +/- 10 (liver 1)/77 +/- 10 microM (liver 2), respectively. In summary, we showed that piperine inhibits both the drug transporter P-glycoprotein and the major drug-metabolizing enzyme CYP3A4. Because both proteins are expressed in enterocytes and hepatocytes and contribute to a major extent to first-pass elimination of many drugs, our data indicate that dietary piperine could affect plasma concentrations of P-glycoprotein and CYP3A4 substrates in humans, in particular if these drugs are administered orally.

    Topics: Alkaloids; ATP Binding Cassette Transporter, Subfamily B, Member 1; Benzodioxoles; Biological Transport; Colonic Neoplasms; Cyclosporine; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Digoxin; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Kinetics; Mixed Function Oxygenases; Piperidines; Polyunsaturated Alkamides; Tumor Cells, Cultured

2002