digoxin and 3-(6-isobutyl-9-methoxy-1-4-dioxo-1-2-3-4-6-7-12-12a-octahydropyrazino(1--2--1-6)pyrido(3-4-b)indol-3-yl)propionic-acid-tert-butyl-ester

digoxin has been researched along with 3-(6-isobutyl-9-methoxy-1-4-dioxo-1-2-3-4-6-7-12-12a-octahydropyrazino(1--2--1-6)pyrido(3-4-b)indol-3-yl)propionic-acid-tert-butyl-ester* in 2 studies

Other Studies

2 other study(ies) available for digoxin and 3-(6-isobutyl-9-methoxy-1-4-dioxo-1-2-3-4-6-7-12-12a-octahydropyrazino(1--2--1-6)pyrido(3-4-b)indol-3-yl)propionic-acid-tert-butyl-ester

ArticleYear
Characterization of efflux transporters involved in distribution and disposition of apixaban.
    Drug metabolism and disposition: the biological fate of chemicals, 2013, Volume: 41, Issue:4

    The studies reported here were conducted to investigate the transport characteristics of apixaban (1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide) and to understand the impact of transporters on apixaban distribution and disposition. In human permeability glycoprotein (P-gp)- and breast cancer resistance protein (BCRP)-cDNA-transfected cell monolayers as well as Caco-2 cell monolayers, the apparent efflux ratio of basolateral-to-apical (PcB-A) versus apical-to-basolateral permeability (PcA-B) of apixaban was >10. The P-gp- and BCRP-facilitated transport of apixaban was concentration- and time-dependent and did not show saturation over a wide range of concentrations (1-100 μM). The efflux transport of apixaban was also demonstrated by the lower mucosal-to-serosal permeability than that of the serosal-to-mucosal direction in isolated rat jejunum segments. Apixaban did not inhibit digoxin transport in Caco-2 cells. Ketoconazole decreased the P-gp-mediated apixaban efflux in Caco-2 and the P-gp-cDNA-transfected cell monolayers, but did not affect the apixaban efflux to a meaningful extent in the BCRP-cDNA-transfected cell monolayers. Coincubation of a P-gp inhibitor (ketoconazole or cyclosporin A) and a BCRP inhibitor (Ko134) provided more complete inhibition of apixaban efflux in Caco-2 cells than separate inhibition by individual inhibitors. Naproxen inhibited apixaban efflux in Caco-2 cells but showed only a minimal effect on apixaban transport in the BCRP-transfected cells. Naproxen was the first nonsteroidal antiinflammatory drug that was demonstrated as a weak P-gp inhibitor. These results demonstrate that apixaban is a substrate for efflux transporters P-gp and BCRP, which can help explain its low brain penetration, and low fetal exposures and high milk excretion in rats.

    Topics: Adenosine; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Cell Line, Transformed; Cell Membrane Permeability; Cyclosporine; Digoxin; Diketopiperazines; Dose-Response Relationship, Drug; Drug Interactions; Fibrinolytic Agents; Heterocyclic Compounds, 4 or More Rings; Humans; Ketoconazole; Male; Naproxen; Neoplasm Proteins; Pyrazoles; Pyridones; Rats

2013
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Efflux transporters expressed in the apical membrane of intestinal enterocytes have been implicated in drug oral absorption. The current study presents a strategy and tools to quantitatively predict the impact of efflux on oral absorption for new chemical entities (NCEs) in early drug discovery. Sixty-three marketed drugs with human absorption data were evaluated in the Caco-2 bidirectional permeability assay and subjected to specific transporter inhibition. A four-zone graphical model was developed from apparent permeability and efflux ratios to quickly identify compounds whose efflux activity may distinctly influence human absorption. NCEs in "zone 4" will probably have efflux as a barrier for oral absorption and further mechanistic studies are required. To interpret mechanistic results, we introduced a new quantitative substrate classification parameter, transporter substrate index (TSI). TSI allowed more flexibility and considered both in vitro and in vivo outcomes. Its application ranged from addressing the challenge of overlapping substrate specificity to projecting the role of transporter(s) on exposure or potential drug-drug interaction risk. The potential impact of efflux transporters associated with physicochemical properties on drug absorption is discussed in the context of TSI and also the previously reported absorption quotient. In this way, the chemistry strategy may be differentially focused on passive permeability or efflux activity or both.

    Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity

2011