digitonin and tetraphenylphosphonium

digitonin has been researched along with tetraphenylphosphonium* in 7 studies

Other Studies

7 other study(ies) available for digitonin and tetraphenylphosphonium

ArticleYear
Analysis of mitochondrial dysfunction during cell death.
    Current protocols in cell biology, 2003, Volume: Chapter 18

    Attempts to identify a common underlying step in the apoptotic program in response to various cytotoxic stimuli have focused on the role of mitochondria in this form of cell death. This unit contains a family of protocols that can be used to assess mitochondrial functions during apoptotic responses. Protocols are included for the collection and analysis of released proteins, for detection of the mitochondrial permeability transition, for measurement of mitochondrial membrane potential, and for preparation of mitochondria from different tissue sources.

    Topics: Animals; Calcium Signaling; Cell Death; Cell Line; Cytochromes c; Digitonin; Electrodes; Humans; Immunoblotting; Membrane Potential, Mitochondrial; Mitochondria; Mitochondria, Liver; Mitochondrial Membranes; Mitochondrial Proteins; Mitochondrial Swelling; Onium Compounds; Organophosphorus Compounds; Permeability; Rats; Spectrophotometry

2003
Measurement of plasma membrane potential in isolated rat hepatocytes using the lipophilic cation, tetraphenylphosphonium: correction of probe intracellular binding and mitochondrial accumulation.
    Biochimica et biophysica acta, 1992, Nov-09, Volume: 1111, Issue:2

    The lipophilic cation tetraphenylphosphonium (TPP+) has been extensively utilized as the probe for the membrane potential (Vm) in various cells. For application to mammalian cells, however, two serious problems require resolution: (1), correction of TPP+ binding to intracellular constituents and (2), estimation of the considerable TPP+ accumulation in mitochondria. We propose here a simple corrective method for the TPP+ binding and its accumulation. TPP+ distribution is assumed as: (1), two compartments (a cytosolic and a mitochondrial space); (2), a proportional relationship between TPP+ bound amount and its unbound concentration in each compartment. We theoretically derived the simple equation: Vm = - RT/F ln(C/Mphys ratio/C/Mabol ratio) where R, T and F have their usual thermodynamic significance. Here, the C/M ratio is defined as the ratio of TPP+ concentration of apparent intracellular to extracellular space. The suffixes phys and abol, respectively, mean the physiological and solely Vm-abolished conditions. This equation was checked with hepatocytes, because estimating hepatocytes Vm with TPP+ distribution is not considered possible because of the relatively high mitochondrial content. The selective Vm abolition was achieved by permeabilization with 20 microM of amphotericin B. The Vm value was, thus, estimated to be -38.6 +/- 0.3 mV, compatible with those obtained with microelectrodes in other laboratories. Vm in hepatocytes is composed of transmembrane K+ diffusion potential (-20.6 +/- 0.3 mV) and electrogenic Na+/K(+)-ATPase (-19.6 +/- 0.4 mV). Addition of rheogenic L-alanine caused a transient but significant depolarization (from control to -34 +/- 0.3 mV). These results taken together indicate that hepatocyte Vm can be accurately determined with the present simple method, so that it may possibly be applicable to the evaluation of Vm in other mammalian cells.

    Topics: Amphotericin B; Animals; Cell Membrane; Digitonin; Liver; Male; Mathematics; Membrane Potentials; Mitochondria, Liver; Onium Compounds; Organophosphorus Compounds; Ouabain; Rats; Rats, Wistar; Sodium-Potassium-Exchanging ATPase

1992
Ca2+ transport in digitonin-permeabilized trypanosomatids.
    Molecular and biochemical parasitology, 1990, Volume: 42, Issue:1

    The use of digitonin to permeabilize Leishmania mexicana mexicana, Leishmania agamae, and Crithidia fasciculata plasma membranes enabled us to study Ca2+ transport in situ. The present results show that the mitochondria of these trypanosomatids are able to build up and retain a membrane potential as indicated by a tetraphenylphosphonium-sensitive electrode. Ca2+ uptake caused membrane depolarization compatible with the existence of an electrogenically mediated Ca2+ transport mechanism in these mitochondria. Ca2+ uptake was partially inhibited by ruthenium red, almost totally inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and stimulated by inorganic phosphate. Large amounts of Ca2+ were retained by C. fasciculata mitochondria even after addition of thiols and NAD(P)H oxidants such as t-butylhydroperoxide and diamide. In contrast, Ca2+ was not retained in the matrix of Leishmania sp. mitochondria for long periods of time. In addition to the mitochondrial Ca2+ uptake, a vanadate-sensitive Ca2(+)-transporting system was also detectable in these trypanosomatids.

    Topics: Animals; Biological Transport; Calcium; Crithidia; Digitonin; Leishmania mexicana; Membrane Potentials; Mitochondria; Onium Compounds; Organophosphorus Compounds; Trypanosoma

1990
Energetics of Ehrlich ascites mitochondria: membrane potential of isolated mitochondria and mitochondria within digitonin-permeabilized cells.
    Biochimica et biophysica acta, 1990, Feb-22, Volume: 1015, Issue:3

    Ehrlich ascites tumour cells were treated with digitonin so that they became permeable for low-molecular-weight compounds but, at certain concentrations of digitonin, retained most of their cytoplasmic proteins. Respiration of mitochondria with exogenous substrates and their membrane potential could thus be measured in situ by means of oxygen electrode and tetraphenylphosphonium-sensitive electrode, respectively. The results were compared with data from similar measurements on mitochondria isolated from such digitonin-permeabilized cells. Isolated mitochondria and mitochondria in situ oxidized succinate at similar rates and developed membrane potential of comparable magnitude. Both preparations also exhibited an identical nonlinear relationship between resting state respiration (titrated with a respiratory inhibitor) and the membrane potential. In the cells permeabilized with low concentrations of digitonin (i.e., retaining most of cytoplasmic proteins) and suspended in medium containing NaCl and other major anions and cations at concentrations close to those in mammalian plasma, anaerobiosis did not produce a decrease in the mitochondrial membrane potential, which was collapsed only after a subsequent addition of oligomycin. In this medium, glucose had little effect on either respiration or the membrane potential.

    Topics: Animals; Carcinoma, Ehrlich Tumor; Cell Line; Cell Membrane Permeability; Digitonin; Electrodes; Energy Metabolism; Glucose; Intracellular Membranes; Membrane Potentials; Mice; Microscopy, Electron; Mitochondria; Onium Compounds; Organophosphorus Compounds

1990
Characteristics of Ca2+ transport by Trypanosoma cruzi mitochondria in situ.
    Archives of biochemistry and biophysics, 1989, Volume: 272, Issue:1

    The use of digitonin to permeabilize Trypanosoma cruzi plasma membrane has allowed the study of Ca2+ transport and oxidative phosphorylation in mitochondria in situ (R. Docampo and A. E. Vercesi (1989) J. Biol. Chem. 264, 108-111). The present results show that these mitochondria are able to build up and retain a membrane potential as indicated by a tetraphenylphosphonium-sensitive electrode. Ca2+ uptake caused membrane depolarization compatible with the existence of an electrogenically mediated Ca2+ transport mechanism in these mitochondria. Addition of Ca2+ or ethylene glycol bis (beta-aminoethyl ether) N-N'-tetraacetic acid to these preparations under steady-state conditions was followed by Ca2+ uptake or release, respectively, tending to restore the original Ca2+ "set point" at about 0.9 microM. In addition, large amounts of Ca2+ were retained by T. cruzi mitochondria even after addition of thiols and NAD(P)H oxidants such as t-butyl hydroperoxide, diamide, and the 1,2-naphthoquinone beta-lapachone. However, when ascorbate plus N,N,N',N'-tetramethyl-p-phenylenediamine in the presence of antimycin A was used as subtrate, beta-lapachone caused pyridine nucleotide oxidation, and Ca2+ accumulation by these mitochondria was considerably lower than in control preparations, this effect being dose-dependent.

    Topics: Adenosine Diphosphate; Animals; Biological Transport; Calcium; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cell Membrane Permeability; Digitonin; Egtazic Acid; Intracellular Membranes; Male; Membrane Potentials; Mitochondria; Mitochondria, Liver; NADP; Naphthoquinones; Onium Compounds; Organophosphorus Compounds; Oxidation-Reduction; Peroxides; Phosphorylation; Rats; Rats, Inbred Strains; tert-Butylhydroperoxide; Trypanosoma cruzi

1989
Measurement of 'in situ' mitochondrial membrane potential in Ehrlich ascites tumor cells during aerobic glycolysis.
    Biochimica et biophysica acta, 1988, Oct-05, Volume: 935, Issue:3

    (1) A method is presented for continuous and simultaneous monitoring of the 'in situ' mitochondrial membrane potential (delta psi m) and respiration rate of Ehrlich ascites tumor cells. The method involves permeabilization of the plasma membrane, achieved by treatment with low digitonin concentration, and the use of a TPP+ selective electrode attached to an oxygraph vessel. Binding of the probe inside the cells was analyzed assuming a proportional relationship between the amount of bound TPP+ and the free concentration of the lipophilic cation. (2) Evidence is reported that the addition of glucose to digitonin-permeabilized Ehrlich ascites tumor cells causes a decrease of mitochondrial membrane potential that coincided with a transient enhancement of the respiration rate and remained unchanged during the subsequent Crabtree effect. We have characterized the effect of glucose on delta psi m by determining its dependent on the glycolytic pathway and its sensitivity towards oligomycin. The mutual relationships between glucose and ADP effects on the mitochondrial membrane potential were also studied. A plausible mechanism underlying the depolarization of mitochondrial membrane induced by glucose is presented.

    Topics: Adenosine Diphosphate; Aerobiosis; Animals; Carcinoma, Ehrlich Tumor; Cell Membrane Permeability; Digitonin; Female; Glucose; Glycolysis; Intracellular Membranes; Membrane Potentials; Mice; Mitochondria; Onium Compounds; Organophosphorus Compounds; Oxygen Consumption

1988
Subsynaptosomal distribution of calcium during aging and 3,4-diaminopyridine treatment.
    Neurobiology of aging, 1985,Winter, Volume: 6, Issue:4

    Since previous studies showed that calcium uptake by synaptosomes from rodents declines with aging, the subsynaptosomal distribution of calcium was determined with the disruption method of Scott et al. Calcium uptake by the mitochondrial (digitonin-resistant) and non-mitochondrial (digitonin-labile) compartments, as well as total uptake, were determined at 2, 5 and 10 min. After a 10 min incubation under resting conditions (5 mM-KCl), total calcium uptake decreased at 10 months (-14.6%) and 30 months (-33.0%) of age; mitochondrial calcium uptake increased by 10 months (+ 11.2%) but declined by 30 months (-17.5%); the non-mitochondrial calcium compartment declined at 10 (-34.7%) and 30 (-43.4%) months when compared to the 3 month old control. With potassium depolarization (31 mM-KCl), total calcium uptake declined from 100% (3 months) to 73.8% (10 months) or 53.0% (30 months); mitochondrial calcium uptake declined from 100% (3 months) to 85.6% (10 months) or 68.4% (30 months); non-mitochondrial calcium uptake decreased at 10 (-34.3%) and 30 (-57.7%) months of age when compared to 3 months (100%). The deficits in calcium homeostasis are not due to changes in synaptosomal volumes or to diminished membrane potentials, as assessed by tetraphenylphosphonium ion accumulation. 3,4-Diaminopyridine partially reversed the alterations in total, mitochondrial and non-mitochondrial calcium uptake by synaptosomes from aged mice.

    Topics: 4-Aminopyridine; Aging; Amifampridine; Aminopyridines; Animals; Brain; Calcium; Digitonin; In Vitro Techniques; Male; Mice; Mice, Inbred BALB C; Mitochondria; Onium Compounds; Organophosphorus Compounds; Potassium; Synaptosomes

1985