digitonin and sodium-carbonate

digitonin has been researched along with sodium-carbonate* in 2 studies

Other Studies

2 other study(ies) available for digitonin and sodium-carbonate

ArticleYear
Submitochondrial localization of the mitochondrial isoform of folylpolyglutamate synthetase in CCRF-CEM human T-lymphoblastic leukemia cells.
    Biochimica et biophysica acta, 2005, Oct-30, Volume: 1746, Issue:1

    Earlier studies from this laboratory showed that human folylpolyglutamate synthetase (FPGS) exists as cytosolic and mitochondrial (mFPGS) isoforms. Localization of mFPGS within mitochondria may help elucidate how the enzyme functions to maintain the mitochondrial folate pool. A human T-lymphoblastic leukemia CCRF-CEM cell lysate was fractionated by differential centrifugation into cytosolic and mitochondrial fractions. Activity assays for cytosol-and mitochondria-specific enzymes verified the purity and integrity of the fractions. Mitochondria were subfractionated with increasing concentrations of digitonin to successively extract the four submitochondrial compartments. Western analyses of the fractions using protein markers specific for each compartment suggest that mFPGS is distributed in the matrix and/or inner membrane compartments. Further support for an interaction of mFPGS with the inner mitochondrial membrane is provided by localization of about half of the mFPGS in the mitochondrial membrane fraction obtained by freeze-thaw of intact mitochondria; the remaining mFPGS is located in the soluble fraction. Resistance of about half of the mFPGS in whole mitochondria to alkaline carbonate extraction suggests that its interaction with the inner membrane is more similar to an integral, than a peripheral, membrane protein. The data suggest that human mFPGS is at least in part strongly associated with the inner mitochondrial membrane.

    Topics: Carbonates; Cell Extracts; Cell Line, Tumor; Digitonin; Freezing; Humans; Isoenzymes; Leukemia, Lymphoid; Peptide Synthases; Submitochondrial Particles

2005
Specific intracellular hyaluronic acid binding to isolated rat hepatocytes is membrane-associated.
    Biochimica et biophysica acta, 1988, Dec-08, Volume: 946, Issue:1

    Intact isolated rat hepatocytes show a small amount of specific 125I-labeled hyaluronic acid (HA) binding. However, in the presence of digitonin, a very large increase in the specific binding of 125I-HA is observed. Chondroitin sulfate, heparin and dextran sulfate were as effective as unlabeled HA in competing for 125I-HA binding to permeabilized hepatocytes, indicating that the binding sites may have a general specificity for glycosaminoglycans. After rat hepatocytes had been homogenized in a hypotonic buffer, more than 98% of the 125I-HA binding activity could be pelleted by centrifugation at 100,000 x g for 1 h. Mild alkaline treatment of hepatocyte membranes did not release 125I-HA binding activity, suggesting that the HA binding site is an integral membrane molecule. Furthermore, trypsin treatment of deoxycholate-extracted membranes destroyed the binding activity, as assessed by a dot-blot assay. This suggests that a protein component in the membrane is necessary for 125I-HA binding activity. Rat fibrinogen could be a possible candidate for the HA binding activity because HA binds specifically to human fibrinogen (LeBoeuf et al. (1986) J. Biol. Chem. 261, 12 586). Also, fibrinogen can be found in a quasi-crystalline form in rat hepatocytes and could be pelleted with the membranes. Rat fibrinogen was not responsible for the 125I-HA binding activity, since (1) purified rat fibrinogen did not bind to 125I-HA, and (2) immunoprecipitation of rat fibrinogen from hepatocyte extracts did not decrease the 125I-HA binding of these extracts. We conclude that the internal HA binding sites are membrane- or cytoskeleton-associated proteins and are neither cytosolic proteins nor fibrinogen.

    Topics: Animals; Blotting, Western; Carbonates; Cell Membrane Permeability; Digitonin; Fibrinogen; Hyaluronic Acid; Liver; Male; Membranes; Rats; Rats, Inbred Strains; Trypsin

1988