Page last updated: 2024-08-17

diethylnitrosamine and sorafenib

diethylnitrosamine has been researched along with sorafenib in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's8 (80.00)24.3611
2020's2 (20.00)2.80

Authors

AuthorsStudies
Carr, BI; Cavallini, A; D'Alessandro, R; Refolo, MG; Wang, M; Wang, Z1
Allemeersch, J; Carmeliet, P; Casteleyn, C; Colle, I; Coulon, S; Geerts, A; Heindryckx, F; Libbrecht, L; Stassen, JM; Terrie, E; Van Vlierberghe, H1
Chan, C; Felsher, DW; Gamrekelashvili, J; Greten, TF; Hewitt, S; Kapanadze, T; Kapoor, V; Korangy, F; Ma, C; Manns, MP; Zender, L; Zhao, F1
Barbeiro, DF; Bida, PM; Carrilho, FJ; Coelho, AM; Cogliati, B; D'Albuquerque, LA; Kubrusly, MS; Mazo, DF; Oliveira, CP; Pereira, IV; Souza, HP; Stefano, JT; Torres, MM; Xerfan, MP1
Elsadek, B; Kratz, F; Mansour, A; Saleem, T; Warnecke, A1
Baglioni, M; Baron Toaldo, M; Bolondi, L; Cescon, M; Giovannini, C; Gramantieri, L1
Abdelghany, RH; El-Ahwany, E; Goda, R; Helal, NS; Mahmoud, AAA; Saber, S1
Ghanim, AMH; Saber, S; Younis, NS1
Abd-Elbaset, M; Abo-Youssef, AM; Ahmed, OM; Mansour, AM1
Chang, CC; Chen, Y; Chou, MC; Dinh, TK; Huang, JK; Huang, KW; Jan, JJ; Ke, YY; Lee, CJ; Shia, KS; Shiue, TY; Song, JS; Sung, YC; Ta, YN; Wu, CH; Yeh, KC; Yeh, TK1

Other Studies

10 other study(ies) available for diethylnitrosamine and sorafenib

ArticleYear
c-Met-Akt pathway-mediated enhancement of inhibitory c-Raf phosphorylation is involved in vitamin K1 and sorafenib synergy on HCC growth inhibition.
    Cancer biology & therapy, 2011, Sep-15, Volume: 12, Issue:6

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cyclic AMP-Dependent Protein Kinases; Diethylnitrosamine; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; Liver Neoplasms, Experimental; MAP Kinase Kinase Kinases; Niacinamide; Phenylurea Compounds; Phosphorylation; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-met; Proto-Oncogene Proteins c-raf; Pyridines; Rats; Rats, Inbred F344; Signal Transduction; Sorafenib; Vitamin K 1

2011
The placental growth factor as a target against hepatocellular carcinoma in a diethylnitrosamine-induced mouse model.
    Journal of hepatology, 2013, Volume: 58, Issue:2

    Topics: Animals; Antibodies, Monoclonal; Antineoplastic Agents; Carcinoma, Hepatocellular; Diethylnitrosamine; Disease Models, Animal; Drug Therapy, Combination; Liver Neoplasms; Mice; Mice, Knockout; Mice, Transgenic; Neoplasm Metastasis; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Placenta Growth Factor; Pregnancy Proteins; Sorafenib; Treatment Outcome

2013
Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma.
    Journal of hepatology, 2013, Volume: 59, Issue:5

    Topics: Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Movement; Cell Proliferation; Diethylnitrosamine; Disease Models, Animal; Granulocyte-Macrophage Colony-Stimulating Factor; Heterografts; Humans; Liver Neoplasms; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Myeloid Cells; Niacinamide; Phenylurea Compounds; Proto-Oncogene Proteins c-myc; Sorafenib

2013
Sorafenib prevents liver fibrosis in a non-alcoholic steatohepatitis (NASH) rodent model.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2015, Volume: 48, Issue:5

    Topics: Animals; Chaperonin 60; Diet, High-Fat; Diethylnitrosamine; Disease Models, Animal; Fibrillar Collagens; Glutathione Transferase; HSP90 Heat-Shock Proteins; Interleukin-10; Interleukin-6; Liver Cirrhosis; Matrix Metalloproteinase 9; Mitochondria, Liver; Niacinamide; Non-alcoholic Fatty Liver Disease; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Phenylurea Compounds; Polarography; Protein Kinase Inhibitors; Rats, Sprague-Dawley; RNA, Messenger; Sorafenib; Tissue Inhibitor of Metalloproteinase-1; Tissue Inhibitor of Metalloproteinase-2; Transcription Factors

2015
The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib.
    Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 2017, Volume: 49, Issue:2

    Topics: Animals; Antibiotics, Antineoplastic; Biomarkers, Tumor; Carcinoma, Hepatocellular; Diethylnitrosamine; Doxorubicin; Humans; Kaplan-Meier Estimate; Liver; Liver Neoplasms, Experimental; Male; Niacinamide; Phenylurea Compounds; Rats; Rats, Wistar; Serum Albumin; Sorafenib; Survival Rate

2017
Vidatox 30 CH has tumor activating effect in hepatocellular carcinoma.
    Scientific reports, 2017, 03-21, Volume: 7

    Topics: Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Cycle Proteins; Cell Line; Cell Line, Tumor; Cell Proliferation; Cytokines; Diethylnitrosamine; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Hepatocytes; Humans; Liver Neoplasms; Male; Niacinamide; Phenylurea Compounds; Rats, Wistar; Scorpions; Signal Transduction; Sorafenib; Spider Venoms; Tumor Suppressor Protein p53; Vascular Endothelial Growth Factor Receptor-2

2017
Perindopril, fosinopril and losartan inhibited the progression of diethylnitrosamine-induced hepatocellular carcinoma in mice via the inactivation of nuclear transcription factor kappa-B.
    Toxicology letters, 2018, Oct-01, Volume: 295

    Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cyclin D1; Diethylnitrosamine; Fosinopril; Liver Neoplasms, Experimental; Losartan; Male; Matrix Metalloproteinase 2; Mice; NF-kappa B; NF-KappaB Inhibitor alpha; Niacinamide; Perindopril; Phenylurea Compounds; Phosphorylation; Renin-Angiotensin System; Signal Transduction; Sorafenib; Time Factors; Transcription Factor RelA; Transforming Growth Factor beta1; Tumor Necrosis Factor-alpha; Vascular Endothelial Growth Factor A

2018
Mebendazole augments sensitivity to sorafenib by targeting MAPK and BCL-2 signalling in n-nitrosodiethylamine-induced murine hepatocellular carcinoma.
    Scientific reports, 2019, 12-13, Volume: 9, Issue:1

    Topics: Alanine Transaminase; Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cyclin D1; Diethylnitrosamine; Hep G2 Cells; Humans; Kaplan-Meier Estimate; Ki-67 Antigen; Liver Neoplasms; Male; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Mebendazole; Mice; Mitogen-Activated Protein Kinases; Molecular Targeted Therapy; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; RNA, Messenger; Signal Transduction; Sorafenib; Tissue Inhibitor of Metalloproteinase-1; Tumor Burden; Vascular Endothelial Growth Factor A

2019
The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways.
    Naunyn-Schmiedeberg's archives of pharmacology, 2020, Volume: 393, Issue:9

    Topics: Animals; Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Carcinoma, Hepatocellular; Cell Proliferation; Diethylnitrosamine; Ki-67 Antigen; Liver Neoplasms; Male; Nerve Tissue Proteins; Norisoprenoids; Oxidative Stress; PPAR gamma; Proto-Oncogene Proteins c-bcl-2; Rats, Wistar; Signal Transduction; Sorafenib

2020
A highly selective and potent CXCR4 antagonist for hepatocellular carcinoma treatment.
    Proceedings of the National Academy of Sciences of the United States of America, 2021, 03-30, Volume: 118, Issue:13

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Hepatocellular; Cell Line, Tumor; Diethylnitrosamine; Drug Synergism; Humans; Liver Neoplasms; Liver Neoplasms, Experimental; Lymphocytes, Tumor-Infiltrating; Male; Mice; Molecular Docking Simulation; Rats; Receptors, CXCR4; Signal Transduction; Sorafenib; T-Lymphocytes, Cytotoxic; Tumor Microenvironment; Tumor-Associated Macrophages; Xenograft Model Antitumor Assays

2021