diethylamine-salicylate has been researched along with salicylamide* in 2 studies
2 other study(ies) available for diethylamine-salicylate and salicylamide
Article | Year |
---|---|
Differentiated in vivo skin penetration of salicylic compounds in hairless rats measured by cutaneous microdialysis.
The purpose was to investigate the in vivo skin penetration of four 14C-salicylic compounds using microdialysis and to relate dermal concentrations to structural features. Furthermore, to compare two in vivo retrodialysis recovery methods for estimation of true unbound extracellular concentrations. Microdialysis probes were inserted in the dermis of hairless rats. Equimolal 14C-salicylic formulations were applied topically and dialysate sampled consecutively for 4h. True extracellular concentrations were estimated by retrodialysis by drug method (the 14C-salicylic compounds themselves) and by retrodialysis by calibrator method (3H-salicylic acid as internal standard). Probe depth was measured by ultrasound scanning. High dermal concentrations were found after application of 14C-salicylamide (low protein-binding) and the lipophilic ester 14C-butyl salicylate, which was completely hydrolysed to 14C-salicylic acid during skin diffusion. Protein binding and dissociation may explain the lower dermal concentrations of 14C-salicylic acid and 14C-diethylamine salicylate, respectively. Probe depth did not significantly influence dialysate concentrations. The two in vivo recovery correction methods did not reduce the variation in concentration-time curves. In conclusion, differentiated penetration kinetics was found ranking: 14C-salicylamide >/= 14C-butyl salicylate > 14C-salicylic acid > 14C-diethylamine salicylate. Dermal concentrations were related to structural features of the model compounds. The two correction methods performed alike; however, the calibrator method has the advantage of serving as a quality control during experiments. Topics: Administration, Cutaneous; Animals; Female; In Vitro Techniques; Microdialysis; Models, Biological; Permeability; Rats; Rats, Sprague-Dawley; Salicylamides; Salicylates; Skin; Skin Absorption; Time Factors | 2004 |
The effect of topically applied salicylic compounds on serotonin-induced scratching behaviour in hairless rats.
There is a strong need for antipruritic substances for treating itch in clinical dermatology. In one recent human study, topically applied acetylsalicylic acid has been described to rapidly decrease histamine-induced itch. We have established a model for periferally elicited pruritus by injecting serotonin into the rostral back area (neck) in rats. Using this model, we aimed to investigate the antipruritic potential of four different salicylic compounds, which all possess different skin penetration characteristics. Eighteen rats were studied for 6 weeks. Prior to serotonin injections (2 mg/ml, 50 micro l), 10 micro l of test substances was applied to a circular area 18 mm in diameter. The four substances were salicylic acid, butyl salicylate, diethylamine salicylate and salicylamide, all solubilized in dimethyl isosorbide to a concentration of 5% w/w. Diethylamine salicylate and salicylamide were previously shown to be slowly absorbed through rat skin in contrast to salicylic acid and butyl salicylate. After serotonin injections, scratching was monitored by video recording for 1.5 h. Compared with the vehicle, a lower number of scratch sequences were seen when diethylamine salicylate (P < 0.001) and salicylamide (P = 0.005) had been applied. The numbers of scratch sequences were lower with diethylamine salicylate and salicylamide than with the vehicle throughout the 1.5-h study period. We conclude that topical application of diethylamine salicylate and salicylamide could suppress serotonin-induced scratching in rats. The antipruritic effect seems to be related to the slow drug release of the two substances. The results may be clinically relevant as serotonin induces itch in humans. Topics: Administration, Topical; Animals; Antipruritics; Female; Pruritus; Rats; Rats, Mutant Strains; Salicylamides; Salicylates; Salicylic Acid; Serotonin | 2002 |