diethyl-maleate has been researched along with 4-aminophenol* in 2 studies
2 other study(ies) available for diethyl-maleate and 4-aminophenol
Article | Year |
---|---|
Effects of lipoic acid and dihydrolipoic acid on 4-aminophenol-mediated erythrocytic toxicity in vitro.
The effects of the antioxidant lipoic acid and its reduced form, dihydrolipoic acid (DHLA), were studied on the process of the erythrocytic toxicity of 4-aminophenol in human erythrocytes in vitro. 4-Aminophenol alone caused a stepwise increase in methaemoglobin formation, along with a commensurate decrease in total thiols. At 10 min., in the presence of lipoic acid alone and the thiol depletor 1-chloro-2,4-dinitrobenzene (CDNB) alone, 4-aminophenol-mediated methaemoglobin formation was significantly increased, whilst thiol levels were significantly reduced compared with the 4-aminophenol alone. At 10 min., with DHLA and CDNB alone, 4-aminophenol was associated with significantly increased methaemoglobin formation. However, thiol levels were not significantly different in the presence of DHLA compared with 4-aminophenol alone, although thiol levels were different compared with control (4-aminophenol alone) in the incubations with CDNB alone. At 15 min., only CDNB/4-aminophenol methaemoglobin formation differed from control, whilst thiol levels were significantly lower in the presence of CDNB alone compared with 4-aminophenol alone. Lipoic acid enhanced the toxicity of 4-aminophenol in terms of increased methaemoglobin formation coupled with increased thiol depletion, whilst DHLA showed increased 4-aminophenol-mediated methaemoglobin formation without thiol depletion. Lipoic acid, and to a lesser extent its reduced derivative DHLA, acted as a prooxidant in the presence of 4-aminophenol, enhancing the oxidative stress effects of the amine in human erythrocytes. Topics: Adult; Aminophenols; Diazonium Compounds; Drug Antagonism; Erythrocytes; Humans; Maleates; Thioctic Acid; Time Factors | 2006 |
Resistance to glutathione depletion in diabetic and non-diabetic human erythrocytes in-vitro.
We have investigated the resistance of erythrocytes from diabetics and non-diabetics to glutathione depletion caused by p-benzoquinone, 1-chloro-2,4-dinitrobenzene (CDNB), diethyl maleate and 4-aminophenol. Incubation of erythrocytes with 4-aminophenol (2 mM) caused a precipitous reduction (>80%) in cellular glutathione levels although there was no significant difference between 4-aminophenol-mediated glutathione depletion in the diabetic and non-diabetic cells. p-Benzoquinone and CDNB were both associated with a less severe initial reduction in glutathione levels (>50% at 30 min) although p-benzoquinone caused greater depletion (P < 0.001) at 4.5 h (21.1 +/- 3.1%, non-diabetic; 20.0 +/- 1.0%, diabetic) compared with CDNB (49.2 +/- 2.2%, non-diabetic; 51.3 +/- 1.1% diabetic). Although there was no significant difference between the two types of cell in terms of level of depletion, administration of diethyl maleate caused a significant reduction in glutathione levels at 30 min (P < 0.0005), 3.5 h (P < 0.05) and 4.5 h (P < 0.05) in erythrocytes from diabetic man compared with those from non-diabetic man. Co-administration of buthionine sulphoximine (20 mM) and 4-aminophenol (1 mM) also led to a significant reduction in glutathione levels in diabetic cells at 30 min (P < 0.05), 3.5 h (P < 0.02) and 4.5 h (P < 0.007) compared with those in non-diabetic cells. The observations that diabetic red cells' resistance to depletion was similar to that of nondiabetic cells for three of the four depletors, and that the combination of 4-aminophenol and buthionine sulphoximine-mediated inhibition of glutathione synthesis was required to illustrate differences suggests that diabetic complications might be a result of the long-term effect of small deficiencies in oxidative self-defence mechanisms such as glutathione. Topics: Adult; Aminophenols; Benzoquinones; Buthionine Sulfoximine; Diabetes Mellitus; Dinitrochlorobenzene; Erythrocytes; Glutathione; Humans; In Vitro Techniques; Maleates; Middle Aged | 1999 |