diethyl-aminoethyl-hexanoate has been researched along with gibberellic-acid* in 1 studies
1 other study(ies) available for diethyl-aminoethyl-hexanoate and gibberellic-acid
Article | Year |
---|---|
Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.
Research is needed to improve efficiency of phytoextraction of heavy metals from contaminated soils. A pot experiment was carried out to study the effects of plant growth regulators (PGRs) (diethyl aminoethyl hexanoate (C18H33NO8, DA-6) and gibberellic acid 3 (C19H22O6, GA3)) and/or EDTA on Cd extraction, subcellular distribution and chemical forms in Lolium perenne. The addition of EDTA or PGRs significantly enhanced Cd extraction efficiency (P<0.05), with the decreasing order of: 1 μM DA-6>10 μM DA-6>10 μM GA3>2.5 mmol kg(-1) EDTA>other treatments of PGR alone. PGRs+EDTA resulted in a further increase in Cd extraction efficiency, with EDTA+1 μM DA-6 being the most efficient. At the subcellular level, about 44-57% of Cd was soluble fraction, 18-44% in cell walls, and 12-25% in cellular organelles fraction. Chemical speciation analysis showed that 40-54% of Cd was NaCl extractable, 7-23% HAc extractable, followed by other fractions. EDTA increased the proportions of Cd in soluble and cellular organelles fraction, as well as the metal migration in shoot; therefore, the toxicity to plant increased and plant growth was inhibited. Conversely, PGRs fixed more Cd in cell walls and reduced Cd migration in shoot; thus, metal toxicity was reduced. In addition, PGRs promoted plant biomass growth significantly (P<0.05), with 1 μM DA-6 being the most effective. A combination of DA-6/GA3 with EDTA can alleviate the adverse effect of EDTA on plant growth, and the treatment of EDTA+1 μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Cd contaminated soil. Topics: Cadmium; Caproates; Drug Synergism; Edetic Acid; Gibberellins; Lead; Lolium; Soil Pollutants | 2014 |