dienelactone and 3-chlorocatechol

dienelactone has been researched along with 3-chlorocatechol* in 2 studies

Other Studies

2 other study(ies) available for dienelactone and 3-chlorocatechol

ArticleYear
Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.
    Biochimica et biophysica acta, 2014, Volume: 1844, Issue:9

    2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases.

    Topics: 4-Butyrolactone; Adipates; Bacterial Proteins; Catalytic Domain; Catechols; Chlorophenols; Crystallography, X-Ray; Histidine; Intramolecular Lyases; Lactones; Molecular Docking Simulation; Protein Multimerization; Pseudomonas putida; Rhodococcus; Sorbic Acid; Structural Homology, Protein; Structure-Activity Relationship; Substrate Specificity

2014
TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate.
    Archives of microbiology, 2002, Volume: 178, Issue:1

    Ralstonia eutropha JMP134 (pJP4) harbors two functional gene clusters for the degradation of chlorocatechols, i.e. tfdCDEF (in short: tfd (I)) and tfdD (II) C (II) E (II) F (II) (in short: tfd (II)), which are both present on the catabolic plasmid pJP4. In this study, we compared the function of both gene clusters for degradation of chlorocatechols by constructing isolated and hybrid tfd (I)- tfd (II) clusters on plasmids in R. eutropha, by activity assays of Tfd enzymes, and by HPLC/MS of individual enzymatic catalytic steps in chlorocatechol conversion. R. eutropha containing the tfd (II) cluster alone or hybrid tfd-clusters with tfdD (II) as sole gene for chloromuconate cycloisomerase were impaired in growth on 3-chlorobenzoate, in contrast to R. eutrophaharboring the complete tfd (I) cluster. Enzyme activities for TfdD(II) and for TfdE(II) were very low in R. eutropha when induced with 3-chlorobenzoate. By contrast, a relatively high enzyme activity was found for TfdF(II). Spectral conversion assays with extracts from R. eutropha strains expressing tfdD (II) all showed accumulation of a compound with a similar UV spectrum as 2-chloro- cis,cis-muconate from 3-chlorocatechol. HPLC analysis of in vitro assays in which each individual step in 3-chlorocatechol conversion was reproduced by sequentially adding cell extracts of an Escherichia coli expressing one Tfd enzyme only demonstrated that TfdD(II) was unable to cause conversion of 2-chloro- cis,cis-muconate. No accumulation of intermediates was observed with 4-chlorocatechol. From these results, we conclude that at least TfdD(II) is a bottleneck in conversion of 3-chlorocatechol and, therefore, in efficient metabolism of 3-chlorobenzoate. This study showed the subtle functional and expression differences between similar enzymes of the tfd-encoded pathway and demonstrated that extreme care has to be taken when inferring functionality from sequence data alone.

    Topics: Adipates; Amino Acid Sequence; Base Sequence; Catechols; Chlorobenzoates; Cloning, Molecular; Cupriavidus necator; Escherichia coli; Intramolecular Lyases; Lactones; Molecular Sequence Data; Plasmids; Sorbic Acid

2002
chemdatabank.com