didanosine and dexelvucitabine

didanosine has been researched along with dexelvucitabine* in 2 studies

Other Studies

2 other study(ies) available for didanosine and dexelvucitabine

ArticleYear
HIV-1 resistance profile of the novel nucleoside reverse transcriptase inhibitor beta-D-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine (Reverset).
    Antiviral chemistry & chemotherapy, 2003, Volume: 14, Issue:1

    Nucleoside reverse transcriptase inhibitors (NRTIs) represent the cornerstone of highly active antiretroviral therapy when combined with non-nucleoside reverse transcriptase inhibitors (NNRTIs) or HIV-1 protease inhibitors (PIs). Unlike the NNRTIs and PIs, NRTIs must be successively phosphorylated by cellular kinases to a triphosphate form, which represents the active metabolite possessing antiviral activity. Emergence of viral resistance to NRTIs has severely hampered treatment options for persons infected with HIV-1. As such, there is an urgent need to develop NRTIs capable of suppressing NRTI-resistant strains of HIV-1. We have recently reported that the cytidine analogue D-d4FC (DPC817, Reverset) effectively inhibits clinically prevalent resistant strains of HIV-1. In this report, we have extended these findings and now describe a detailed resistance profile for this novel NRTI. By examining a panel of 50 viruses carrying RTs derived from HIV-1 clinical isolates displaying a wide range of NRTI resistance mutations, we report that the median fold increase in effective antiviral concentration for such a panel of viruses is 3.2, which is comparable to tenofovir (2.8-fold) and didanosine (2.4-fold). D-d4FC is highly effective at inhibiting subsets of lamivudine- and zidovudine-resistant variants but, like other NRTIs, seems less potent against multi-NRTI-resistant viruses, particularly those carrying the Q151M complex of mutations. Finally, in vitro selections for HIV-1 mutants capable of replicating in the presence of D-d4FC yielded a mutant carrying the RT K65R mutation. This mutation confers 5.3- to 8.7-fold resistance to D-d4FC in vitro. These findings suggest that D-d4FC may represent an alternative NRTI for the treatment of individuals infected with lamivudine- and zidovudine-resistant strains of HIV-1.

    Topics: Adenine; Anti-HIV Agents; Cell Line; Cytidine Triphosphate; Didanosine; Drug Resistance, Multiple, Viral; Genotype; HIV Reverse Transcriptase; HIV-1; Humans; Lamivudine; Mutation; Organophosphonates; Organophosphorus Compounds; Reverse Transcriptase Inhibitors; Species Specificity; Tenofovir; Transfection; Zalcitabine; Zidovudine

2003
Metabolism of 2',3'-dideoxy-2',3'-didehydro-beta-L(-)-5-fluorocytidine and its activity in combination with clinically approved anti-human immunodeficiency virus beta-D(+) nucleoside analogs in vitro.
    Antimicrobial agents and chemotherapy, 1998, Volume: 42, Issue:7

    2',3'-Dideoxy-2',3'-didehydro-beta-L(-)-5-fluorocytidine [L(-)Fd4C] has been reported to be a potent inhibitor of the human immunodeficiency virus (HIV) in cell culture. In the present study the antiviral activity of this compound in two-drug combinations and its intracellular metabolism are addressed. The two-drug combination of L(-)Fd4C plus 2',3'-didehydro-2'-3'-dideoxythymidine (D4T, or stavudine) or 3'-azido-3'-deoxythymidine (AZT, or zidovudine) synergistically inhibited replication of HIV in vitro. Additive antiviral activity was observed with L(-)Fd4C in combination with 2',3'-dideoxycytidine (ddC, or zalcitabine) or 2',3'-dideoxyinosine (ddI, or didanosine). This beta-L(-) nucleoside analog has no activity against mitochondrial DNA synthesis at concentrations up to 10 microM. As we previously reported for other beta-L(-) nucleoside analogs, L(-)Fd4C could protect against mitochondrial toxicity associated with D4T, ddC, and ddI. Metabolism studies showed that this drug is converted intracellularly to its mono-, di-, and triphosphate metabolites. The enzyme responsible for monophosphate formation was identified as cytoplasmic deoxycytidine kinase, and the K(m) is 100 microM. L(-)Fd4C was not recognized in vitro by human mitochondrial deoxypyrimidine nucleoside kinase. Also, L(-)Fd4C was not a substrate for deoxycytidine deaminase. L(-)Fd4C 5'-triphosphate served as an alternative substrate to dCTP for incorporation into DNA by HIV reverse transcriptase. The favorable anti-HIV activity and protection from mitochondrial toxicity by L(-)Fd4C in two-drug combinations favors the further development of L(-)Fd4C as an anti-HIV agent.

    Topics: Anti-HIV Agents; Cell Line; Deamination; Deoxycytidine Kinase; Didanosine; DNA Polymerase gamma; DNA-Directed DNA Polymerase; DNA, Mitochondrial; DNA, Viral; Drug Interactions; HIV Reverse Transcriptase; HIV-1; Phosphorylation; Stavudine; Virus Replication; Zalcitabine; Zidovudine

1998