dicumarol and juglone

dicumarol has been researched along with juglone* in 2 studies

Other Studies

2 other study(ies) available for dicumarol and juglone

ArticleYear
Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase.
    The Journal of biological chemistry, 1992, Jan-05, Volume: 267, Issue:1

    zeta-Crystallin is a major protein in the lens of certain mammals. In guinea pigs it comprises 10% of the total lens protein, and it has been shown that a mutation in the zeta-crystallin gene is associated with autosomal dominant congenital cataract. As with several other lens crystallins of limited phylogenetic distribution, zeta-crystallin has been characterized as an "enzyme/crystallin" based on its ability to reduce catalytically the electron acceptor 2,6-dichlorophenolindophenol. We report here that certain naturally occurring quinones are good substrates for the enzymatic activity of zeta-crystallin. Among the various quinones tested, the orthoquinones 1,2-naphthoquinone and 9,10-phenanthrenequinone were the best substrates whereas menadione, ubiquinone, 9,10-anthraquinone, vitamins K1 and K2 were inactive as substrates. This quinone reductase activity was NADPH specific and exhibited typical Michaelis-Menten kinetics. Activity was sensitive to heat and sulfhydryl reagents but was very stable on freezing. Dicumarol (Ki = 1.3 x 10(-5) M) and nitrofurantoin (Ki = 1.4 x 10(-5) M) inhibited the activity competitively with respect to the electron acceptor, quinone. NADPH protected the enzyme against inactivation caused by heat, N-ethylmaleimide, or H2O2. Electron paramagnetic resonance spectroscopy of the reaction products showed formation of a semiquinone radical. The enzyme activity was associated with O2 consumption, generation of O2- and H2O2, and reduction of ferricytochrome c. These properties indicate that the enzyme acts through a one-electron transfer process. The substrate specificity, reaction characteristics, and physicochemical properties of zeta-crystallin demonstrate that it is an active NADPH:quinone oxidoreductase distinct from quinone reductases described previously.

    Topics: Animals; Catalysis; Crystallins; Cyclic N-Oxides; Cytochrome c Group; Dicumarol; Electron Spin Resonance Spectroscopy; Guinea Pigs; Hydrogen Peroxide; Kinetics; Lens, Crystalline; NADP; Naphthoquinones; Nitrofurantoin; Oxygen; Quinone Reductases; Quinones; Spin Labels; Substrate Specificity

1992
Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes.
    The Journal of biological chemistry, 1991, Nov-15, Volume: 266, Issue:32

    The effect of hydroxy substitution on 1,4-naphthoquinone toxicity to cultured rat hepatocytes was studied. Toxicity of the quinones decreased in the series 5,8-dihydroxy-1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone greater than 1,4-naphthoquinone greater than 2-hydroxy-1,4-naphthoquinone, and intracellular GSSG formation decreased in the order 5,8-dihydroxy-1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone much greater than 1,4-naphthoquinone much greater than 2-hydroxy-1,4-naphthoquinone. The electrophilicity of the quinones decreased in the order 1,4-naphthoquinone much greater than 5-hydroxy-1,4-naphthoquinone greater than 5,8-dihydroxy-1,4-naphthoquinone much greater than 2-hydroxy-1,4-naphthoquinone. Treatment of the hepatocytes with BSO (buthionine sulfoximine) or BCNU (1,3-bis-2-chloroethyl-1-nitrosourea) increased 5-hydroxy-1, 4-naphthoquinone and 5,8-dihydroxy-1,4-naphthoquinone toxicity, whereas neither BSO nor BCNU largely affected 1,4-naphthoquinone and 2-hydroxy-1, 4-naphthoquinone toxicity. Dicumarol increased the toxicity of 1,4-naphthoquinone dramatically and somewhat the toxicity of 2-hydroxy-1,4- naphthoquinone, whereas 5-hydroxy-1,4-naphthoquinone and 5,8-dihydroxy-1,4-naphthoquinone toxicity increased only slightly. The toxicity of 5,8-dihydroxy-1,4-naphthoquinone decreased dramatically in reduced O2 concentration, whereas 1,4-naphthoquinone, 5-hydroxy-1,4-naphthoquinone, and 2-hydroxy-1,4-naphthoquinone toxicity was not largely affected. It was concluded that 5,8-dihydroxy-1,4-naphthoquinone toxicity is due to free radical formation, whereas the toxicity of 1,4-naphthoquinone and of 5-hydroxy-1,4-naphthoquinone also has an electrophilic addition component. The toxicity of 2-hydroxy-1,4-naphthoquinone could not be fully explained by either of these phenomena.

    Topics: Animals; Buthionine Sulfoximine; Carmustine; Cell Survival; Dicumarol; Glutathione; Liver; Male; Methionine Sulfoximine; Mitochondria, Liver; Molecular Structure; Naphthoquinones; Oxidation-Reduction; Oxygen Consumption; Rats; Rats, Inbred Strains; Structure-Activity Relationship

1991