diclofenac and pinacidil

diclofenac has been researched along with pinacidil in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (42.86)29.6817
2010's4 (57.14)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Castañeda-Hernández, G; Granados-Soto, V; Ortiz, MI; Rosas, R; Torres-López, JE; Vidal-Cantú, GC1
Castañeda-Hernández, G; Granados-Soto, V; Ortiz, MI1
Cairns, BE; Dong, XD; Mann, MK; Mok, E; Svensson, P1

Other Studies

7 other study(ies) available for diclofenac and pinacidil

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Pharmacological evidence for the activation of K(+) channels by diclofenac.
    European journal of pharmacology, 2002, Mar-01, Volume: 438, Issue:1-2

    Topics: 4-Aminopyridine; Analgesics; Analgesics, Opioid; Animals; Anti-Inflammatory Agents, Non-Steroidal; Apamin; Behavior, Animal; Charybdotoxin; Diclofenac; Dose-Response Relationship, Drug; Female; Formaldehyde; Glyburide; Hindlimb; Morphine; Pain; Pinacidil; Potassium Channel Blockers; Potassium Channels; Rats; Rats, Wistar; Tetraethylammonium; Tolbutamide

2002
Pinacidil increases diclofenac antinociception in the formalin test.
    Proceedings of the Western Pharmacology Society, 2005, Volume: 48

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antihypertensive Agents; Diclofenac; Drug Synergism; Female; Formaldehyde; Functional Laterality; Pain Measurement; Pinacidil; Rats; Rats, Wistar

2005
Diclofenac exerts local anesthetic-like actions on rat masseter muscle afferent fibers.
    Brain research, 2008, Feb-15, Volume: 1194

    Topics: Analysis of Variance; Anesthetics; Animals; Diclofenac; Dose-Response Relationship, Drug; Drug Interactions; Female; Glyburide; Hypoglycemic Agents; Lidocaine; Male; Masseter Muscle; Muscle Fibers, Skeletal; Physical Stimulation; Pinacidil; Potassium Channel Blockers; Potassium Chloride; Rats; Rats, Sprague-Dawley; Sensory Thresholds

2008